Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dokl Biochem Biophys ; 481(1): 205-207, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30168060

RESUMEN

The study was aimed at testing the hypotheses about the role of cross-bridges and calpains in reduction of rat soleus passive tension under conditions of hindlimb unloading. For this purpose, we used an inhibitor of µ-calpain PD 150606 as well as a blocker of actomyosin interaction (blebbistatin). It was found for the first time that a decrease in passive tension of rat soleus after 3-day hindlimb unloading is associated with the activity of µ-calpain and does not depend on the processes of cross-bridges formation.


Asunto(s)
Calpaína/química , Calpaína/metabolismo , Suspensión Trasera , Músculo Esquelético/fisiología , Estrés Mecánico , Animales , Activación Enzimática , Masculino , Ratas , Ratas Wistar , Factores de Tiempo
2.
Biochemistry (Mosc) ; 80(1): 61-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25754040

RESUMEN

The pigment-protein complex of photosystem 2 (PS 2) catalyzes the light-driven oxidation of water molecule and the reduction of plastoquinone. In this work, we studied the effect of the disaccharide trehalose, which is unique in its physicochemical properties, on isolated PS 2 complex. It was found that trehalose significantly stimulated the steady-state rate of oxygen evolution. The study of single flash-induced fluorescence decay kinetics demonstrated that trehalose did not affect the rate of QA(-) oxidation, although it led to an increase in the relative fractions of PS 2 reaction centers capable of QA(-) oxidation. Trehalose also prevented PS 2 complexes from being inactivated on prolonged storage. We propose that in the presence of trehalose, which affects the extent of hydration, the protein can preferentially exist in a more optimal conformation for effective functioning.


Asunto(s)
Complejo de Proteína del Fotosistema II/metabolismo , Trehalosa/farmacología , Transporte de Electrón/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Plastoquinona/química , Plastoquinona/metabolismo , Sustancias Protectoras/farmacología , Spinacia oleracea/metabolismo
3.
Biochemistry (Mosc) ; 78(4): 395-402, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23590442

RESUMEN

The light-induced functioning of photosystem 2 (PS 2) is directly linked to the translocation of both electrons and protons across the membrane, which results in the formation of transmembrane electric potential difference (ΔΨ). Generation of ΔΨ due to S-state transitions of the water oxidation complex was demonstrated for the first time in Mn-depleted and reconstituted PS 2 core complexes incorporated into liposomes. The kinetics and relative amplitudes of the electrogenic reactions in dark-adapted samples during S1→S2, S2→S3, and S4→S0 transitions in response to the first, second and third laser flashes were comparable to those obtained in the intact PS 2 core particles. These results expand current understanding of the nature and mechanisms of electrogenic (vectorial) reactions due to a charge transfer on the donor side of PS 2.


Asunto(s)
Manganeso/deficiencia , Manganeso/metabolismo , Potenciales de la Membrana , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Fuerza Protón-Motriz , Cinética , Liposomas/química , Liposomas/metabolismo , Spinacia oleracea/enzimología
4.
Biochemistry (Mosc) ; 77(9): 947-55, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23157254

RESUMEN

The protein-pigment complex of photosystem 2 (PS2) localized in the thylakoid membranes of higher plants, algae, and cyanobacteria is the main source of oxygen on Earth. The light-induced functioning of PS2 is directly linked to electron and proton transfer across the membrane, which results in the formation of transmembrane electric potential difference (ΔΨ). The major contribution to ΔΨ of the PS2 reaction center is due to charge separation between the primary chlorophyll donor P(680) and the quinone acceptor Q(A), accompanied by re-reduction of P(680)(+) by the redox-active tyrosine residue Y(Z). The processes associated with the uptake and release of protons on the acceptor and donor sides of the enzyme, respectively, are also coupled with ΔΨ generation. The objective of this work was to describe the mechanisms of ΔΨ generation associated with the S-state transitions of the water-oxidizing complex in intact PS2 complex and in PS2 preparation depleted of Mn(4)Ca cluster in the presence of artificial electron donors. The findings elucidate the mechanisms of electrogenic reactions on the PS2 donor side and may be a basis for development of an effective solar energy conversion system.


Asunto(s)
Potenciales de la Membrana , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Fuerza Protón-Motriz , Electrones , Oxidación-Reducción , Procesos Fotoquímicos , Agua/química , Agua/metabolismo
5.
Biochemistry (Mosc) ; 75(5): 579-84, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20632936

RESUMEN

Transfer of electrons between artificial electron donors diphenylcarbazide (DPC) and hydroxylamine (NH2OH) and reaction center of manganese-depleted photosystem 2 (PS2) complexes was studied using the direct electrometrical method. For the first time it was shown that reduction of redox-active amino acid tyrosine Y(Z)(.) by DPC is coupled with generation of transmembrane electric potential difference (DeltaPsi). The amplitude of this phase comprised ~17% of that of the DeltaPsi phase due to electron transfer between Y(Z) and the primary quinone acceptor Q(A). This phase is associated with vectorial intraprotein electron transfer between the DPC binding site on the protein-water interface and the tyrosine Y(Z)(.). The slowing of DeltaPsi decay in the presence of NH2OH indicates effective electron transfer between the artificial electron donor and reaction center of PS2. It is suggested that NH2OH is able to diffuse through channels with diameter of 2.0-3.0 A visible in PS2 structure and leading from the protein-water interface to the Mn(4)Ca cluster binding site with the concomitant electron donation to Y(Z)(.). Because the dielectrically-weighted distance between the NH2OH binding site and Y(Z)(.) is not determined, the transfer of electrons from NH2OH to Y(Z)(.) could be either electrically silent or contribute negligibly to the observed electrogenicity in comparison with hydrophobic donors.


Asunto(s)
Difenilcarbazida/química , Hidroxilamina/química , Complejo de Proteína del Fotosistema II/metabolismo , Sitios de Unión , Transporte de Electrón , Manganeso/metabolismo , Potenciales de la Membrana , Oxidación-Reducción , Estructura Terciaria de Proteína , Tirosina/metabolismo
6.
J Photochem Photobiol B ; 104(1-2): 372-6, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21450489

RESUMEN

Chlorophyll fluorescence transients measurements were employed to study the functioning of spinach photosystem II (PS II) core complexes in solution or reconstituted into liposomes. Lipid vesicles were prepared from soybean phospholipids (asolectine) or a mixture of spinach thylakoid lipids. In comparison with intact PS II core complexes comprising two distinct fluorescence phases, designated as O-J and J-P, complete suppression of the latter phase in Mn-depleted samples was observed. An increase of magnitude of the J-P phase in the presence of exogenous MnCl(2) (4 Mn/RC) indicate in favor of partial restoring of oxygen-evolution activity of PS II. The J-P phase observed in PS II in solution was characterized by a lifetime of ~320 ms, while in liposome-reconstituted samples this phase was accelerated up to ~20 ms in case of asolectine and up to ~9 ms in case of a mixture of thylakoid lipids. These data clearly suggest that lipid environment stimulates the steady-state rate of oxygen evolution. The effect of lipids is likely based on keeping the embedded proteins in optimal structure for efficient functioning.


Asunto(s)
Manganeso/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Liposomas/química , Oxígeno/química , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/química , Soluciones , Espectrometría de Fluorescencia , Spinacia oleracea/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA