RESUMEN
Amyotrophic Lateral Sclerosis (ALS) is a neural disorder gradually leading to paralysis of the whole body. Alterations in superoxide dismutase SOD1 gene have been linked with several variants of familial ALS. Here, we investigated a transgenic (Tg) cloned swine model expressing the human pathological hSOD1G93A allele. As in patients, these Tg pigs transmitted the disease to the progeny with an autosomal dominant trait and showed ALS onset from about 27â¯months of age. Post mortem analysis revealed motor neuron (MN) degeneration, gliosis and hSOD1 protein aggregates in brainstem and spinal cord. Severe skeletal muscle pathology including necrosis and inflammation was observed at the end stage, as well. Remarkably, as in human patients, these Tg pigs showed a quite long presymptomatic phase in which gradually increasing amounts of TDP-43 were detected in peripheral blood mononuclear cells. Thus, this transgenic swine model opens the unique opportunity to investigate ALS biomarkers even before disease onset other than testing novel drugs and possible medical devices.
Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Neuronas Motoras/patología , Enfermedades Musculares/genética , Degeneración Nerviosa/genética , Superóxido Dismutasa-1/genética , Proteinopatías TDP-43/genética , Esclerosis Amiotrófica Lateral/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Humanos , Enfermedades Musculares/patología , Degeneración Nerviosa/patología , Porcinos , Proteinopatías TDP-43/patologíaRESUMEN
DNA replication occupies a central position in the cell cycle and, therefore, in the development and life of multicellular organisms. During the last 10 years, our comprehension of this important process has considerably improved. Although the mechanisms that coordinate DNA replication with the other moments of the cell cycle are not yet fully understood, it is known that they mainly operate through DNA replication origins and the protein complexes bound to them. In eukaryotes, the packaging status of chromatin seems to be part of the mechanism that controls whether or not and when during the S-phase a particular origin will be activated. Intriguingly, the protein complexes bound to DNA replication origins appear to be directly involved in controlling chromatin packaging. In this manner they can also affect gene expression. In this review we focus on DNA replication origins in metazoan cells and on the relationship between these elements and the structural and functional organization of the genome.