Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Nature ; 603(7903): 949-956, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35322233

RESUMEN

Membrane fusion triggered by Ca2+ is orchestrated by a conserved set of proteins to mediate synaptic neurotransmitter release, mucin secretion and other regulated exocytic processes1-4. For neurotransmitter release, the Ca2+ sensitivity is introduced by interactions between the Ca2+ sensor synaptotagmin and the SNARE complex5, and sequence conservation and functional studies suggest that this mechanism is also conserved for mucin secretion6. Disruption of Ca2+-triggered membrane fusion by a pharmacological agent would have therapeutic value for mucus hypersecretion as it is the major cause of airway obstruction in the pathophysiology of respiratory viral infection, asthma, chronic obstructive pulmonary disease and cystic fibrosis7-11. Here we designed a hydrocarbon-stapled peptide that specifically disrupts Ca2+-triggered membrane fusion by interfering with the so-called primary interface between the neuronal SNARE complex and the Ca2+-binding C2B domain of synaptotagmin-1. In reconstituted systems with these neuronal synaptic proteins or with their airway homologues syntaxin-3, SNAP-23, VAMP8, synaptotagmin-2, along with Munc13-2 and Munc18-2, the stapled peptide strongly suppressed Ca2+-triggered fusion at physiological Ca2+ concentrations. Conjugation of cell-penetrating peptides to the stapled peptide resulted in efficient delivery into cultured human airway epithelial cells and mouse airway epithelium, where it markedly and specifically reduced stimulated mucin secretion in both systems, and substantially attenuated mucus occlusion of mouse airways. Taken together, peptides that disrupt Ca2+-triggered membrane fusion may enable the therapeutic modulation of mucin secretory pathways.


Asunto(s)
Calcio , Hidrocarburos , Fusión de Membrana , Mucinas , Proteínas SNARE , Animales , Calcio/metabolismo , Hidrocarburos/química , Fusión de Membrana/fisiología , Ratones , Mucinas/metabolismo , Neurotransmisores/metabolismo , Péptidos/farmacología , Mucosa Respiratoria , Proteínas SNARE/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(13): e2300360120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36940324

RESUMEN

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) introduced a relatively large number of mutations, including three mutations in the highly conserved heptad repeat 1 (HR1) region of the spike glycoprotein (S) critical for its membrane fusion activity. We show that one of these mutations, N969K induces a substantial displacement in the structure of the heptad repeat 2 (HR2) backbone in the HR1HR2 postfusion bundle. Due to this mutation, fusion-entry peptide inhibitors based on the Wuhan strain sequence are less efficacious. Here, we report an Omicron-specific peptide inhibitor designed based on the structure of the Omicron HR1HR2 postfusion bundle. Specifically, we inserted an additional residue in HR2 near the Omicron HR1 K969 residue to better accommodate the N969K mutation and relieve the distortion in the structure of the HR1HR2 postfusion bundle it introduced. The designed inhibitor recovers the loss of inhibition activity of the original longHR2_42 peptide with the Wuhan strain sequence against the Omicron variant in both a cell-cell fusion assay and a vesicular stomatitis virus (VSV)-SARS-CoV-2 chimera infection assay, suggesting that a similar approach could be used to combat future variants. From a mechanistic perspective, our work suggests the interactions in the extended region of HR2 may mediate the initial landing of HR2 onto HR1 during the transition of the S protein from the prehairpin intermediate to the postfusion state.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas del Envoltorio Viral/genética , Secuencia de Aminoácidos , Estructura Secundaria de Proteína , Glicoproteína de la Espiga del Coronavirus/metabolismo , Péptidos/genética , Péptidos/farmacología , Péptidos/química , Antirretrovirales
3.
Proc Natl Acad Sci U S A ; 120(44): e2310174120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37883437

RESUMEN

α-synuclein (α-Syn) is a presynaptic protein that is involved in Parkinson's and other neurodegenerative diseases and binds to negatively charged phospholipids. Previously, we reported that α-Syn clusters synthetic proteoliposomes that mimic synaptic vesicles. This vesicle-clustering activity depends on a specific interaction of α-Syn with anionic phospholipids. Here, we report that α-Syn surprisingly also interacts with the neutral phospholipid lysophosphatidylcholine (lysoPC). Even in the absence of anionic lipids, lysoPC facilitates α-Syn-induced vesicle clustering but has no effect on Ca2+-triggered fusion in a single vesicle-vesicle fusion assay. The A30P mutant of α-Syn that causes familial Parkinson disease has a reduced affinity to lysoPC and does not induce vesicle clustering. Taken together, the α-Syn-lysoPC interaction may play a role in α-Syn function.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Vesículas Sinápticas/metabolismo , Lisofosfatidilcolinas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosfolípidos/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(16): e2119467119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35363556

RESUMEN

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available COVID-19 vaccines and monoclonal antibody therapies due to structural and dynamic changes of the viral spike glycoprotein (S). The heptad repeat 1 (HR1) and heptad repeat 2 (HR2) domains of S drive virus­host membrane fusion by assembly into a six-helix bundle, resulting in delivery of viral RNA into the host cell. We surveyed mutations of currently reported SARS-CoV-2 variants and selected eight mutations, including Q954H, N969K, and L981F from the Omicron variant, in the postfusion HR1HR2 bundle for functional and structural studies. We designed a molecular scaffold to determine cryogenic electron microscopy (cryo-EM) structures of HR1HR2 at 2.2­3.8 Å resolution by linking the trimeric N termini of four HR1 fragments to four trimeric C termini of the Dps4 dodecamer from Nostoc punctiforme. This molecular scaffold enables efficient sample preparation and structure determination of the HR1HR2 bundle and its mutants by single-particle cryo-EM. Our structure of the wild-type HR1HR2 bundle resolves uncertainties in previously determined structures. The mutant structures reveal side-chain positions of the mutations and their primarily local effects on the interactions between HR1 and HR2. These mutations do not alter the global architecture of the postfusion HR1HR2 bundle, suggesting that the interfaces between HR1 and HR2 are good targets for developing antiviral inhibitors that should be efficacious against all known variants of SARS-CoV-2 to date. We also note that this work paves the way for similar studies in more distantly related viruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Secuencia Conservada , Humanos , Dominios Proteicos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Internalización del Virus
5.
Proc Natl Acad Sci U S A ; 119(40): e2210990119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36122200

RESUMEN

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge currently available coronavirus disease 2019 vaccines and monoclonal antibody therapies through epitope change on the receptor binding domain of the viral spike glycoprotein. Hence, there is a specific urgent need for alternative antivirals that target processes less likely to be affected by mutation, such as the membrane fusion step of viral entry into the host cell. One such antiviral class includes peptide inhibitors, which block formation of the so-called heptad repeat 1 and 2 (HR1HR2) six-helix bundle of the SARS-CoV-2 spike (S) protein and thus interfere with viral membrane fusion. We performed structural studies of the HR1HR2 bundle, revealing an extended, well-folded N-terminal region of HR2 that interacts with the HR1 triple helix. Based on this structure, we designed an extended HR2 peptide that achieves single-digit nanomolar inhibition of SARS-CoV-2 in cell-based and virus-based assays without the need for modifications such as lipidation or chemical stapling. The peptide also strongly inhibits all major SARS-CoV-2 variants to date. This extended peptide is ∼100-fold more potent than all previously published short, unmodified HR2 peptides, and it has a very long inhibition lifetime after washout in virus infection assays, suggesting that it targets a prehairpin intermediate of the SARS-CoV-2 S protein. Together, these results suggest that regions outside the HR2 helical region may offer new opportunities for potent peptide-derived therapeutics for SARS-CoV-2 and its variants, and even more distantly related viruses, and provide further support for the prehairpin intermediate of the S protein.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Glicoproteína de la Espiga del Coronavirus , Antivirales/química , Antivirales/farmacología , Humanos , Péptidos/química , Péptidos/farmacología , SARS-CoV-2/efectos de los fármacos
6.
EMBO J ; 38(22): e101603, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31566781

RESUMEN

Neurexins are presynaptic, cell-adhesion molecules that specify the functional properties of synapses via interactions with trans-synaptic ligands. Neurexins are extensively alternatively spliced at six canonical sites that regulate multifarious ligand interactions, but the structural mechanisms underlying alternative splicing-dependent neurexin regulation are largely unknown. Here, we determined high-resolution structures of the complex of neurexophilin-1 and the second laminin/neurexin/sex-hormone-binding globulin domain (LNS2) of neurexin-1 and examined how alternative splicing at splice site #2 (SS2) regulates the complex. Our data reveal a unique, extensive, neurexophilin-neurexin binding interface that extends the jelly-roll ß-sandwich of LNS2 of neurexin-1 into neurexophilin-1. The SS2A insert of LNS2 augments this interface, increasing the binding affinity of LNS2 for neurexophilin-1. Taken together, our data reveal an unexpected architecture of neurexophilin-neurexin complexes that accounts for the modulation of binding by alternative splicing, which in turn regulates the competition of neurexophilin for neurexin binding with other ligands.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Laminina/metabolismo , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuropéptidos/química , Neuropéptidos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/genética , Cristalografía por Rayos X , Glicoproteínas/genética , Ligandos , Ratones , Modelos Moleculares , Moléculas de Adhesión de Célula Nerviosa/genética , Neuropéptidos/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Ratas , Homología de Secuencia
7.
Nature ; 520(7548): 563-6, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25686604

RESUMEN

Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17-SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Autofagia , Endosomas/metabolismo , Lisosomas/metabolismo , Fusión de Membrana , Fagosomas/metabolismo , Proteínas Relacionadas con la Autofagia , Células HEK293 , Células HeLa , Humanos , Fagosomas/química , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo
8.
Nature ; 525(7567): 62-7, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26280336

RESUMEN

Synaptotagmin-1 and neuronal SNARE proteins have central roles in evoked synchronous neurotransmitter release; however, it is unknown how they cooperate to trigger synaptic vesicle fusion. Here we report atomic-resolution crystal structures of Ca(2+)- and Mg(2+)-bound complexes between synaptotagmin-1 and the neuronal SNARE complex, one of which was determined with diffraction data from an X-ray free-electron laser, leading to an atomic-resolution structure with accurate rotamer assignments for many side chains. The structures reveal several interfaces, including a large, specific, Ca(2+)-independent and conserved interface. Tests of this interface by mutagenesis suggest that it is essential for Ca(2+)-triggered neurotransmitter release in mouse hippocampal neuronal synapses and for Ca(2+)-triggered vesicle fusion in a reconstituted system. We propose that this interface forms before Ca(2+) triggering, moves en bloc as Ca(2+) influx promotes the interactions between synaptotagmin-1 and the plasma membrane, and consequently remodels the membrane to promote fusion, possibly in conjunction with other interfaces.


Asunto(s)
Exocitosis , Neuronas/metabolismo , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Sinaptotagminas/química , Sinaptotagminas/metabolismo , Animales , Sitios de Unión/genética , Calcio/química , Calcio/metabolismo , Membrana Celular/metabolismo , Cristalografía por Rayos X , Electrones , Hipocampo/citología , Rayos Láser , Magnesio/química , Magnesio/metabolismo , Fusión de Membrana , Ratones , Modelos Biológicos , Modelos Moleculares , Mutación/genética , Neuronas/química , Neuronas/citología , Proteínas SNARE/genética , Transmisión Sináptica , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Sinaptotagminas/genética
9.
EMBO J ; 35(16): 1810-21, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27402227

RESUMEN

Membrane fusion is essential for eukaryotic life, requiring SNARE proteins to zipper up in an α-helical bundle to pull two membranes together. Here, we show that vesicle fusion can be suppressed by phosphorylation of core conserved residues inside the SNARE domain. We took a proteomics approach using a PKCB knockout mast cell model and found that the key mast cell secretory protein VAMP8 becomes phosphorylated by PKC at multiple residues in the SNARE domain. Our data suggest that VAMP8 phosphorylation reduces vesicle fusion in vitro and suppresses secretion in living cells, allowing vesicles to dock but preventing fusion with the plasma membrane. Markedly, we show that the phosphorylation motif is absent in all eukaryotic neuronal VAMPs, but present in all other VAMPs. Thus, phosphorylation of SNARE domains is a general mechanism to restrict how much cells secrete, opening the door for new therapeutic strategies for suppression of secretion.


Asunto(s)
Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas R-SNARE/metabolismo , Vesículas Secretoras/metabolismo , Animales , Línea Celular , Mastocitos/fisiología , Fosforilación , Proteómica , Ratas
10.
Proc Natl Acad Sci U S A ; 113(32): E4698-707, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27444020

RESUMEN

Complexin activates Ca(2+)-triggered neurotransmitter release and regulates spontaneous release in the presynaptic terminal by cooperating with the neuronal soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and the Ca(2+)-sensor synaptotagmin. The N-terminal domain of complexin is important for activation, but its molecular mechanism is still poorly understood. Here, we observed that a split pair of N-terminal and central domain fragments of complexin is sufficient to activate Ca(2+)-triggered release using a reconstituted single-vesicle fusion assay, suggesting that the N-terminal domain acts as an independent module within the synaptic fusion machinery. The N-terminal domain can also interact independently with membranes, which is enhanced by a cooperative interaction with the neuronal SNARE complex. We show by mutagenesis that membrane binding of the N-terminal domain is essential for activation of Ca(2+)-triggered fusion. Consistent with the membrane-binding property, the N-terminal domain can be substituted by the influenza virus hemagglutinin fusion peptide, and this chimera also activates Ca(2+)-triggered fusion. Membrane binding of the N-terminal domain of complexin therefore cooperates with the other fusogenic elements of the synaptic fusion machinery during Ca(2+)-triggered release.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/fisiología , Calcio/fisiología , Fusión de Membrana , Proteínas Adaptadoras del Transporte Vesicular/química , Humanos , Dominios Proteicos , Proteínas SNARE/fisiología , Vesículas Sinápticas/fisiología , Sinaptotagmina I/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA