Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(2): 446-463.e16, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242087

RESUMEN

Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Modelos Biológicos , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Epigenómica , Genómica , Glioblastoma/genética , Glioblastoma/patología , Análisis de la Célula Individual , Microambiente Tumoral , Heterogeneidad Genética
2.
Cell ; 185(4): 729-745.e20, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35063085

RESUMEN

Brain metastasis (BrM) is the most common form of brain cancer, characterized by neurologic disability and an abysmal prognosis. Unfortunately, our understanding of the biology underlying human BrMs remains rudimentary. Here, we present an integrative analysis of >100,000 malignant and non-malignant cells from 15 human parenchymal BrMs, generated by single-cell transcriptomics, mass cytometry, and complemented with mouse model- and in silico approaches. We interrogated the composition of BrM niches, molecularly defined the blood-tumor interface, and revealed stromal immunosuppressive states enriched with infiltrated T cells and macrophages. Specific single-cell interrogation of metastatic tumor cells provides a framework of 8 functional cell programs that coexist or anticorrelate. Collectively, these programs delineate two functional BrM archetypes, one proliferative and the other inflammatory, that are evidently shaped through tumor-immune interactions. Our resource provides a foundation to understand the molecular basis of BrM in patients with tumor cell-intrinsic and host environmental traits.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Adulto , Anciano , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/inmunología , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Femenino , Variación Genética , Humanos , Evasión Inmune , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Modelos Biológicos , Células Mieloides/patología , Análisis de Componente Principal , RNA-Seq , Análisis de la Célula Individual , Linfocitos T/inmunología
3.
Cell ; 167(5): 1281-1295.e18, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863244

RESUMEN

Glioblastoma stem cells (GSCs) are implicated in tumor neovascularization, invasiveness, and therapeutic resistance. To illuminate mechanisms governing these hallmark features, we developed a de novo glioblastoma multiforme (GBM) model derived from immortalized human neural stem/progenitor cells (hNSCs) to enable precise system-level comparisons of pre-malignant and oncogene-induced malignant states of NSCs. Integrated transcriptomic and epigenomic analyses uncovered a PAX6/DLX5 transcriptional program driving WNT5A-mediated GSC differentiation into endothelial-like cells (GdECs). GdECs recruit existing endothelial cells to promote peritumoral satellite lesions, which serve as a niche supporting the growth of invasive glioma cells away from the primary tumor. Clinical data reveal higher WNT5A and GdECs expression in peritumoral and recurrent GBMs relative to matched intratumoral and primary GBMs, respectively, supporting WNT5A-mediated GSC differentiation and invasive growth in disease recurrence. Thus, the PAX6/DLX5-WNT5A axis governs the diffuse spread of glioma cells throughout the brain parenchyma, contributing to the lethality of GBM.


Asunto(s)
Glioblastoma/genética , Glioblastoma/patología , Invasividad Neoplásica/genética , Proteína Wnt-5a/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Epigenómica , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Células-Madre Neurales/metabolismo , Factor de Transcripción PAX6/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/metabolismo
4.
Cell ; 164(5): 1060-1072, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26919435

RESUMEN

Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.


Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Metilación de ADN , Tumores Neuroectodérmicos/genética , Tumores Neuroectodérmicos/patología , Secuencia de Aminoácidos , Neoplasias del Sistema Nervioso Central/clasificación , Neoplasias del Sistema Nervioso Central/diagnóstico , Niño , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Tumores Neuroectodérmicos/clasificación , Tumores Neuroectodérmicos/diagnóstico , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Transducción de Señal , Transactivadores , Proteínas Supresoras de Tumor/genética
5.
Nature ; 617(7961): 599-607, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138086

RESUMEN

Gliomas synaptically integrate into neural circuits1,2. Previous research has demonstrated bidirectional interactions between neurons and glioma cells, with neuronal activity driving glioma growth1-4 and gliomas increasing neuronal excitability2,5-8. Here we sought to determine how glioma-induced neuronal changes influence neural circuits underlying cognition and whether these interactions influence patient survival. Using intracranial brain recordings during lexical retrieval language tasks in awake humans together with site-specific tumour tissue biopsies and cell biology experiments, we find that gliomas remodel functional neural circuitry such that task-relevant neural responses activate tumour-infiltrated cortex well beyond the cortical regions that are normally recruited in the healthy brain. Site-directed biopsies from regions within the tumour that exhibit high functional connectivity between the tumour and the rest of the brain are enriched for a glioblastoma subpopulation that exhibits a distinct synaptogenic and neuronotrophic phenotype. Tumour cells from functionally connected regions secrete the synaptogenic factor thrombospondin-1, which contributes to the differential neuron-glioma interactions observed in functionally connected tumour regions compared with tumour regions with less functional connectivity. Pharmacological inhibition of thrombospondin-1 using the FDA-approved drug gabapentin decreases glioblastoma proliferation. The degree of functional connectivity between glioblastoma and the normal brain negatively affects both patient survival and performance in language tasks. These data demonstrate that high-grade gliomas functionally remodel neural circuits in the human brain, which both promotes tumour progression and impairs cognition.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Vías Nerviosas , Humanos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Trombospondina 1/antagonistas & inhibidores , Gabapentina/farmacología , Gabapentina/uso terapéutico , Progresión de la Enfermedad , Cognición , Tasa de Supervivencia , Vigilia , Biopsia , Proliferación Celular/efectos de los fármacos
6.
Mod Pathol ; 37(6): 100488, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588881

RESUMEN

Biomarker-driven therapeutic clinical trials require the implementation of standardized, evidence-based practices for sample collection. In diffuse glioma, phosphatidylinositol 3 (PI3)-kinase/AKT/mTOR (PI3/AKT/mTOR) signaling is an attractive therapeutic target for which window-of-opportunity clinical trials could facilitate the identification of promising new agents. Yet, the relevant preanalytic variables and optimal tumor sampling methods necessary to measure pathway activity are unknown. To address this, we used a murine model for isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) and human tumor tissue, including IDH-wildtype GBM and IDH-mutant diffuse glioma. First, we determined the impact of delayed time-to-formalin fixation, or cold ischemia time (CIT), on the quantitative assessment of cellular expression of 6 phosphoproteins that are readouts of PI3K/AK/mTOR activity (phosphorylated-proline-rich Akt substrate of 40 kDa (p-PRAS40, T246), -mechanistic target of rapamycin (p-mTOR; S2448); -AKT (p-AKT, S473); -ribosomal protein S6 (p-RPS6, S240/244 and S235/236), and -eukaryotic initiation factor 4E-binding protein 1 (p-4EBP1, T37/46). With CITs ≥ 2 hours, typical of routine clinical handling, all had reduced or altered expression with p-RPS6 (S240/244) exhibiting relatively greater stability. A similar pattern was observed using patient tumor samples from the operating room with p-4EBP1 more sensitive to delayed fixation than p-RPS6 (S240/244). Many clinical trials utilize unstained slides for biomarker evaluation. Thus, we evaluated the impact of slide storage conditions on the detection of p-RPS6 (S240/244), p-4EBP1, and p-AKT. After 5 months, storage at -80°C was required to preserve the expression of p-4EBP1 and p-AKT, whereas p-RPS6 (240/244) expression was not stable regardless of storage temperature. Biomarker heterogeneity impacts optimal tumor sampling. Quantification of p-RPS6 (240/244) expression in multiple regionally distinct human tumor samples from 8 patients revealed significant intratumoral heterogeneity. Thus, the accurate assessment of PI3K/AKT/mTOR signaling in diffuse glioma must overcome intratumoral heterogeneity and multiple preanalytic factors, including time-to-formalin fixation, slide storage conditions, and phosphoprotein of interest.


Asunto(s)
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Glioma/patología , Glioma/metabolismo , Glioma/genética , Ratones , Biomarcadores de Tumor/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Modelos Animales de Enfermedad , Manejo de Especímenes/métodos
7.
Mol Cell Proteomics ; 21(4): 100216, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35202840

RESUMEN

Glioblastoma (GBM) is the most common and malignant primary brain tumor. The extracellular matrix, also known as the matrisome, helps determine glioma invasion, adhesion, and growth. Little attention, however, has been paid to glycosylation of the extracellular matrix components that constitute the majority of glycosylated protein mass and presumed biological properties. To acquire a comprehensive understanding of the biological functions of the matrisome and its components, including proteoglycans (PGs) and glycosaminoglycans (GAGs), in GBM tumorigenesis, and to identify potential biomarker candidates, we studied the alterations of GAGs, including heparan sulfate (HS) and chondroitin sulfate (CS), the core proteins of PGs, and other glycosylated matrisomal proteins in GBM subtypes versus control human brain tissue samples. We scrutinized the proteomics data to acquire in-depth site-specific glycoproteomic profiles of the GBM subtypes that will assist in identifying specific glycosylation changes in GBM. We observed an increase in CS 6-O sulfation and a decrease in HS 6-O sulfation, accompanied by an increase in unsulfated CS and HS disaccharides in GBM versus control samples. Several core matrisome proteins, including PGs (decorin, biglycan, agrin, prolargin, glypican-1, and chondroitin sulfate proteoglycan 4), tenascin, fibronectin, hyaluronan link protein 1 and 2, laminins, and collagens, were differentially regulated in GBM versus controls. Interestingly, a higher degree of collagen hydroxyprolination was also observed for GBM versus controls. Further, two PGs, chondroitin sulfate proteoglycan 4 and agrin, were significantly lower, about 6-fold for isocitrate dehydrogenase-mutant, compared to the WT GBM samples. Differential regulation of O-glycopeptides for PGs, including brevican, neurocan, and versican, was observed for GBM subtypes versus controls. Moreover, an increase in levels of glycosyltransferase and glycosidase enzymes was observed for GBM when compared to control samples. We also report distinct protein, peptide, and glycopeptide features for GBM subtypes comparisons. Taken together, our study informs understanding of the alterations to key matrisomal molecules that occur during GBM development. (Data are available via ProteomeXchange with identifier PXD028931, and the peaks project file is available at Zenodo with DOI 10.5281/zenodo.5911810).


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Agrina/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glioblastoma/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato , Humanos
8.
Acta Neuropathol ; 147(1): 3, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079020

RESUMEN

Glioblastoma is a clinically and molecularly heterogeneous disease, and new predictive biomarkers are needed to identify those patients most likely to respond to specific treatments. Through prospective genomic profiling of 459 consecutive primary treatment-naïve IDH-wildtype glioblastomas in adults, we identified a unique subgroup (2%, 9/459) defined by somatic hypermutation and DNA replication repair deficiency due to biallelic inactivation of a canonical mismatch repair gene. The deleterious mutations in mismatch repair genes were often present in the germline in the heterozygous state with somatic inactivation of the remaining allele, consistent with glioblastomas arising due to underlying Lynch syndrome. A subset of tumors had accompanying proofreading domain mutations in the DNA polymerase POLE and resultant "ultrahypermutation". The median age at diagnosis was 50 years (range 27-78), compared with 63 years for the other 450 patients with conventional glioblastoma (p < 0.01). All tumors had histologic features of the giant cell variant of glioblastoma. They lacked EGFR amplification, lacked combined trisomy of chromosome 7 plus monosomy of chromosome 10, and only rarely had TERT promoter mutation or CDKN2A homozygous deletion, which are hallmarks of conventional IDH-wildtype glioblastoma. Instead, they harbored frequent inactivating mutations in TP53, NF1, PTEN, ATRX, and SETD2 and recurrent activating mutations in PDGFRA. DNA methylation profiling revealed they did not align with known reference adult glioblastoma methylation classes, but instead had unique globally hypomethylated epigenomes and mostly classified as "Diffuse pediatric-type high grade glioma, RTK1 subtype, subclass A". Five patients were treated with immune checkpoint blockade, four of whom survived greater than 3 years. The median overall survival was 36.8 months, compared to 15.5 months for the other 450 patients (p < 0.001). We conclude that "De novo replication repair deficient glioblastoma, IDH-wildtype" represents a biologically distinct subtype in the adult population that may benefit from prospective identification and treatment with immune checkpoint blockade.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Niño , Persona de Mediana Edad , Anciano , Glioblastoma/genética , Glioblastoma/patología , Inhibidores de Puntos de Control Inmunológico , Homocigoto , Estudios Prospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Eliminación de Secuencia , Mutación/genética , Isocitrato Deshidrogenasa/genética
9.
Acta Neuropathol ; 144(4): 747-765, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35945463

RESUMEN

Gliomas arising in the setting of neurofibromatosis type 1 (NF1) are heterogeneous, occurring from childhood through adulthood, can be histologically low-grade or high-grade, and follow an indolent or aggressive clinical course. Comprehensive profiling of genetic alterations beyond NF1 inactivation and epigenetic classification of these tumors remain limited. Through next-generation sequencing, copy number analysis, and DNA methylation profiling of gliomas from 47 NF1 patients, we identified 2 molecular subgroups of NF1-associated gliomas. The first harbored biallelic NF1 inactivation only, occurred primarily during childhood, followed a more indolent clinical course, and had a unique epigenetic signature for which we propose the terminology "pilocytic astrocytoma, arising in the setting of NF1". The second subgroup harbored additional oncogenic alterations including CDKN2A homozygous deletion and ATRX mutation, occurred primarily during adulthood, followed a more aggressive clinical course, and was epigenetically diverse, with most tumors aligning with either high-grade astrocytoma with piloid features or various subclasses of IDH-wildtype glioblastoma. Several patients were treated with small molecule MEK inhibitors that resulted in stable disease or tumor regression when used as a single agent, but only in the context of those tumors with NF1 inactivation lacking additional oncogenic alterations. Together, these findings highlight recurrently altered pathways in NF1-associated gliomas and help inform targeted therapeutic strategies for this patient population.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Neurofibromatosis 1 , Adulto , Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioma/genética , Glioma/patología , Homocigoto , Humanos , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/genética , Eliminación de Secuencia
10.
J Neurooncol ; 159(1): 43-52, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35672531

RESUMEN

PURPOSE: Prognostically favorable IDH-mutant gliomas are known to produce oncometabolite D-2-hydroxyglutarate (2HG). In this study, we investigated metabolite-based features of patients with grade 2 and 3 glioma using 2HG-specific in vivo MR spectroscopy, to determine their relationship with image-guided tissue pathology and predictive role in progression-free survival (PFS). METHODS: Forty-five patients received pre-operative MRIs that included 3-D spectroscopy optimized for 2HG detection. Spectral data were reconstructed and quantified to compare metabolite levels according to molecular pathology (IDH1R132H, 1p/19q, and p53); glioma grade; histological subtype; and T2 lesion versus normal-appearing white matter (NAWM) ROIs. Levels of 2HG were correlated with other metabolites and pathological parameters (cellularity, MIB-1) from image-guided tissue samples using Pearson's correlation test. Metabolites predictive of PFS were evaluated with Cox proportional hazards models. RESULTS: Quantifiable levels of 2HG in 39/42 (93%) IDH+ and 1/3 (33%) IDH- patients indicated a 91.1% apparent detection accuracy. Myo-inositol/total choline (tCho) showed reduced values in astrocytic (1p/19q-wildtype), p53-mutant, and grade 3 (vs. 2) IDH-mutant gliomas (p < 0.05), all of which exhibited higher proportions of astrocytomas. Compared to NAWM, T2 lesions displayed elevated 2HG+ γ-aminobutyric acid (GABA)/total creatine (tCr) (p < 0.001); reduced glutamate/tCr (p < 0.001); increased myo-inositol/tCr (p < 0.001); and higher tCho/tCr (p < 0.001). Levels of 2HG at sampled tissue locations were significantly associated with tCho (R = 0.62; p = 0.002), total NAA (R = - 0.61; p = 0.002) and cellularity (R = 0.37; p = 0.04) but not MIB-1. Increasing levels of 2HG/tCr (p = 0.0007, HR 5.594) and thresholding (≥ 0.905, median value; p = 0.02) predicted adverse PFS. CONCLUSION: In vivo 2HG detection can reasonably be achieved on clinical scanners and increased levels may signal adverse PFS.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirugía , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/cirugía , Glutaratos , Humanos , Inositol , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Mutación , Receptores de Antígenos de Linfocitos T/metabolismo , Proteína p53 Supresora de Tumor
11.
Acta Neuropathol ; 141(4): 605-617, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33585982

RESUMEN

Low-grade gliomas (LGGs) are the most common childhood brain tumor in the general population and in individuals with the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Surgical biopsy is rarely performed prior to treatment in the setting of NF1, resulting in a paucity of tumor genomic information. To define the molecular landscape of NF1-associated LGGs (NF1-LGG), we integrated clinical data, histological diagnoses, and multi-level genetic/genomic analyses on 70 individuals from 25 centers worldwide. Whereas, most tumors harbored bi-allelic NF1 inactivation as the only genetic abnormality, 11% had additional mutations. Moreover, tumors classified as non-pilocytic astrocytoma based on DNA methylation analysis were significantly more likely to harbor these additional mutations. The most common secondary alteration was FGFR1 mutation, which conferred an additional growth advantage in multiple complementary experimental murine Nf1 models. Taken together, this comprehensive characterization has important implications for the management of children with NF1-LGG, distinct from their sporadic counterparts.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , Neurofibromatosis 1/complicaciones , Adolescente , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Ratones , Mutación
12.
Mol Pharm ; 18(1): 451-460, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33315406

RESUMEN

Glycosaminoglycans (GAGs) such as heparan sulfate and chondroitin sulfate decorate all mammalian cell surfaces. These mucopolysaccharides act as coreceptors for extracellular ligands, regulating cell signaling, growth, proliferation, and adhesion. In glioblastoma, the most common type of primary malignant brain tumor, dysregulated GAG biosynthesis results in altered chain length, sulfation patterns, and the ratio of contributing monosaccharides. These events contribute to the loss of normal cellular function, initiating and sustaining malignant growth. Disruption of the aberrant cell surface GAGs with small molecule inhibitors of GAG biosynthetic enzymes is a potential therapeutic approach to blocking the rogue signaling and proliferation in glioma, including glioblastoma. Previously, 4-azido-xylose-α-UDP sugar inhibited both xylosyltransferase (XYLT-1) and ß-1,4-galactosyltransferase-7 (ß-GALT-7)-the first and second enzymes of GAG biosynthesis-when microinjected into a cell. In another study, 4-deoxy-4-fluoro-ß-xylosides inhibited ß-GALT-7 at 1 mM concentration in vitro. In this work, we seek to solve the enduring problem of drug delivery to human glioma cells at low concentrations. We developed a library of hydrophobic, presumed prodrugs 4-deoxy-4-fluoro-2,3-dibenzoyl-(α- or ß-) xylosides and their corresponding hydrophilic inhibitors of XYLT-1 and ß-GALT-7 enzymes. The prodrugs were designed to be activatable by carboxylesterase enzymes overexpressed in glioblastoma. Using a colorimetric MTT assay in human glioblastoma cell lines, we identified a prodrug-drug pair (4-nitrophenyl-α-xylosides) as lead drug candidates. The candidates arrest U251 cell growth at an IC50 = 380 nM (prodrug), 122 µM (drug), and U87 cells at IC50 = 10.57 µM (prodrug). Molecular docking studies were consistent with preferred binding of the α- versus ß-nitro xyloside conformer to XYLT-1 and ß-GALT-7 enzymes.


Asunto(s)
Glioblastoma/metabolismo , Glicósidos/metabolismo , Animales , Línea Celular Tumoral , Sulfatos de Condroitina/metabolismo , Galactosiltransferasas/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Simulación del Acoplamiento Molecular/métodos , Pentosiltransferasa/metabolismo , Profármacos/metabolismo , UDP Xilosa Proteína Xilosiltransferasa
13.
Pediatr Blood Cancer ; 68(4): e28879, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33405376

RESUMEN

BACKGROUND: Disruption of cell-cycle regulators is a potential therapeutic target for brain tumors in children and adolescents. The aim of this study was to determine the maximum tolerated dose (MTD) and describe toxicities related to palbociclib, a selective cyclin-dependent kinase 4/6 (CDK4/6) inhibitor in pediatric patients with progressive/refractory brain tumors with intact retinoblastoma protein. METHODS: Palbociclib was administered orally starting at 50 mg/m2 daily for the first 21 days of a 28-day course. Dose escalation was according to the Rolling-6 statistical design in less heavily (stratum I) and heavily pretreated (stratum II) patients, and MTD was determined separately for each group. Pharmacokinetic studies were performed during the first course, and pharmacodynamic studies were conducted to evaluate relationships between drug levels and toxicities. RESULTS: A total of 21 patients were enrolled on stratum I and 14 patients on stratum II. The MTD for both strata was 75 mg/m2 . Palbociclib absorption (mean Tmax between 4.9 and 6.6 h) and elimination (mean half-life between 11.3 and 19.5 h) were assessed. The most common toxicity was myelosuppression. Higher palbociclib exposure was associated with grade 3/4 neutropenia and leukopenia. Dose limiting toxicities included grade 4 neutropenia and grade 3 thrombocytopenia and dehydration. No patients had an objective response to palbociclib therapy. CONCLUSIONS: Palbociclib was safely administered to children and adolescents at a dosage of 75 mg/m2 for 21 consecutive days followed by seven days of rest in both strata. Future studies will establish its optimal utilization in pediatric patients with brain tumors.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Piperazinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/uso terapéutico , Adolescente , Adulto , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Neoplasias Encefálicas/patología , Niño , Preescolar , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Piperazinas/efectos adversos , Piperazinas/farmacocinética , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/farmacocinética , Piridinas/efectos adversos , Piridinas/farmacocinética , Adulto Joven
14.
Acta Neuropathol ; 139(6): 1071-1088, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32303840

RESUMEN

Brain tumors are the most common solid tumors of childhood, and the genetic drivers and optimal therapeutic strategies for many of the different subtypes remain unknown. Here, we identify that bithalamic gliomas harbor frequent mutations in the EGFR oncogene, only rare histone H3 mutation (in contrast to their unilateral counterparts), and a distinct genome-wide DNA methylation profile compared to all other glioma subtypes studied to date. These EGFR mutations are either small in-frame insertions within exon 20 (intracellular tyrosine kinase domain) or missense mutations within exon 7 (extracellular ligand-binding domain) that occur in the absence of accompanying gene amplification. We find these EGFR mutations are oncogenic in primary astrocyte models and confer sensitivity to specific tyrosine kinase inhibitors dependent on location within the kinase domain or extracellular domain. We initiated treatment with targeted kinase inhibitors in four children whose tumors harbor EGFR mutations with encouraging results. This study identifies a promising genomically-tailored therapeutic strategy for bithalamic gliomas, a lethal and genetically distinct brain tumor of childhood.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Glioma/genética , Mutación/genética , Adolescente , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Niño , Preescolar , Epigénesis Genética/genética , Receptores ErbB/genética , Femenino , Glioma/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Inhibidores de Proteínas Quinasas/farmacología
15.
Exp Cell Res ; 378(1): 76-86, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30844389

RESUMEN

Slow-cycling and treatment-resistant cancer cells escape therapy, providing a rationale for regrowth and recurrence in patients. Much interest has focused on identifying the properties of slow-cycling tumor cells in glioblastoma (GBM), the most common and lethal primary brain tumor. Despite aggressive ionizing radiation (IR) and treatment with the alkylating agent temozolomide (TMZ), GBM patients invariably relapse and ultimately succumb to the disease. In patient biopsies, we demonstrated that GBM cells expressing the proliferation markers Ki67 and MCM2 displayed a larger cell volume compared to rare slow-cycling tumor cells. In optimized density gradients, we isolated a minor fraction of slow-cycling GBM cells in patient biopsies and tumorsphere cultures. Transcriptional profiling, self-renewal, and tumorigenicity assays reflected the slow-cycling state of high-density GBM cells (HDGCs) compared to the tumor bulk of low-density GBM cells (LDGCs). Slow-cycling HDGCs enriched for stem cell antigens proliferated a few days after isolation to generate LDGCs. Both in vitro and in vivo, we demonstrated that HDGCs show increased treatment-resistance to IR and TMZ treatment compared to LDGCs. In conclusion, density gradients represent a non-marker based approach to isolate slow-cycling and treatment-resistant GBM cells across GBM subgroups.


Asunto(s)
Neoplasias Encefálicas/patología , Autorrenovación de las Células , Glioblastoma/patología , Células Madre Neoplásicas/patología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Proliferación Celular , Resistencia a Antineoplásicos , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Humanos , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Ratones , Ratones Desnudos , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Tolerancia a Radiación , Temozolomida/farmacología , Temozolomida/uso terapéutico , Transcriptoma , Células Tumorales Cultivadas
16.
Proc Natl Acad Sci U S A ; 114(40): 10743-10748, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28916733

RESUMEN

IDH1 mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 IDH1 mutant LGGs. We discovered six cases with copy number alterations (CNAs) at the IDH1 locus at recurrence. Deletion or amplification of IDH1 was followed by clonal expansion and recurrence at a higher grade. Successful cultures derived from IDH1 mutant, but not IDH1 wild type, gliomas systematically deleted IDH1 in vitro and in vivo, further suggestive of selection against the heterozygous mutant state as tumors progress. Tumors and cultures with IDH1 CNA had decreased 2HG, maintenance of G-CIMP, and DNA methylation reprogramming outside CGI. Thus, while IDH1 mutation initiates gliomagenesis, in some patients mutant IDH1 and 2HG are not required for later clonal expansions.


Asunto(s)
Epigenómica , Amplificación de Genes , Glioma/genética , Isocitrato Deshidrogenasa/genética , Mutación , Recurrencia Local de Neoplasia/genética , Eliminación de Secuencia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Variaciones en el Número de Copia de ADN , Metilación de ADN , Perfilación de la Expresión Génica , Glioma/patología , Glutaratos/metabolismo , Humanos , Isocitrato Deshidrogenasa/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Células Tumorales Cultivadas
17.
Int J Cancer ; 145(7): 1889-1901, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30861105

RESUMEN

This clinical trial evaluated whether whole exome sequencing (WES) and RNA sequencing (RNAseq) of paired normal and tumor tissues could be incorporated into a personalized treatment plan for newly diagnosed patients (<25 years of age) with diffuse intrinsic pontine glioma (DIPG). Additionally, whole genome sequencing (WGS) was compared to WES to determine if WGS would further inform treatment decisions, and whether circulating tumor DNA (ctDNA) could detect the H3K27M mutation to allow assessment of therapy response. Patients were selected across three Pacific Pediatric Neuro-Oncology Consortium member institutions between September 2014 and January 2016. WES and RNAseq were performed at diagnosis and recurrence when possible in a CLIA-certified laboratory. Patient-derived cell line development was attempted for each subject. Collection of blood for ctDNA was done prior to treatment and with each MRI. A specialized tumor board generated a treatment recommendation including up to four FDA-approved agents based upon the genomic alterations detected. A treatment plan was successfully issued within 21 business days from tissue collection for all 15 subjects, with 14 of the 15 subjects fulfilling the feasibility criteria. WGS results did not significantly deviate from WES-based therapy recommendations; however, WGS data provided further insight into tumor evolution and fidelity of patient-derived cell models. Detection of the H3F3A or HIST1H3B K27M (H3K27M) mutation using ctDNA was successful in 92% of H3K27M mutant cases. A personalized treatment recommendation for DIPG can be rendered within a multicenter setting using comprehensive next-generation sequencing technology in a clinically relevant timeframe.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Secuenciación del Exoma/métodos , Análisis de Secuencia de ARN/métodos , Secuenciación Completa del Genoma/métodos , Adolescente , Adulto , Neoplasias del Tronco Encefálico/genética , Niño , Preescolar , ADN Tumoral Circulante , Glioma Pontino Intrínseco Difuso/genética , Estudios de Factibilidad , Femenino , Histonas/genética , Humanos , Masculino , Terapia Molecular Dirigida/métodos , Proyectos Piloto , Medicina de Precisión , Adulto Joven
18.
Acta Neuropathol ; 137(1): 139-150, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30196423

RESUMEN

Radiotherapy improves survival for common childhood cancers such as medulloblastoma, leukemia, and germ cell tumors. Unfortunately, long-term survivors suffer sequelae that can include secondary neoplasia. Gliomas are common secondary neoplasms after cranial or craniospinal radiation, most often manifesting as high-grade astrocytomas with poor clinical outcomes. Here, we performed genetic profiling on a cohort of 12 gliomas arising after therapeutic radiation to determine their molecular pathogenesis and assess for differences in genomic signature compared to their spontaneous counterparts. We identified a high frequency of TP53 mutations, CDK4 amplification or CDKN2A homozygous deletion, and amplifications or rearrangements involving receptor tyrosine kinase and Ras-Raf-MAP kinase pathway genes including PDGFRA, MET, BRAF, and RRAS2. Notably, all tumors lacked alterations in IDH1, IDH2, H3F3A, HIST1H3B, HIST1H3C, TERT (including promoter region), and PTEN, which genetically define the major subtypes of diffuse gliomas in children and adults. All gliomas in this cohort had very low somatic mutation burden (less than three somatic single nucleotide variants or small indels per Mb). The ten high-grade gliomas demonstrated markedly aneuploid genomes, with significantly increased quantity of intrachromosomal copy number breakpoints and focal amplifications/homozygous deletions compared to spontaneous high-grade gliomas, likely as a result of DNA double-strand breaks induced by gamma radiation. Together, these findings demonstrate a distinct molecular pathogenesis of secondary gliomas arising after radiation therapy and identify a genomic signature that may aid in differentiating these tumors from their spontaneous counterparts.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioma/genética , Glioma/radioterapia , Adolescente , Adulto , Astrocitoma/radioterapia , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/radioterapia , Niño , Preescolar , Femenino , Genómica , Homocigoto , Humanos , Masculino , Mutación/genética , Eliminación de Secuencia/genética , Telomerasa/genética , Adulto Joven
19.
Mod Pathol ; 31(4): 660-673, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29148537

RESUMEN

Adenomatoid tumors are the most common neoplasm of the epididymis, and histologically similar adenomatoid tumors also commonly arise in the uterus and fallopian tube. To investigate the molecular pathogenesis of these tumors, we performed genomic profiling on a cohort of 31 adenomatoid tumors of the male and female genital tracts. We identified that all tumors harbored somatic missense mutations in the TRAF7 gene, which encodes an E3 ubiquitin ligase belonging to the family of tumor necrosis factor receptor-associated factors (TRAFs). These mutations all clustered into one of five recurrent hotspots within the WD40 repeat domains at the C-terminus of the protein. Functional studies in vitro revealed that expression of mutant but not wild-type TRAF7 led to increased phosphorylation of nuclear factor-kappa B (NF-kB) and increased expression of L1 cell adhesion molecule (L1CAM), a marker of NF-kB pathway activation. Immunohistochemistry demonstrated robust L1CAM expression in adenomatoid tumors that was absent in normal mesothelial cells, malignant peritoneal mesotheliomas and multilocular peritoneal inclusion cysts. Together, these studies demonstrate that adenomatoid tumors of the male and female genital tract are genetically defined by TRAF7 mutation that drives aberrant NF-kB pathway activation.


Asunto(s)
Tumor Adenomatoide/genética , Neoplasias de los Genitales Femeninos/genética , Neoplasias de los Genitales Masculinos/genética , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Tumor Adenomatoide/metabolismo , Tumor Adenomatoide/patología , Adulto , Anciano , Femenino , Neoplasias de los Genitales Femeninos/metabolismo , Neoplasias de los Genitales Femeninos/patología , Neoplasias de los Genitales Masculinos/metabolismo , Neoplasias de los Genitales Masculinos/patología , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , FN-kappa B/metabolismo , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA