Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Pathol ; 189(1): 200-213, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30339838

RESUMEN

Acute lung injury and its more severe form, acute respiratory distress syndrome, are life-threatening respiratory disorders. Overwhelming pulmonary inflammation and endothelium disruption are commonly observed. Endothelial cells (ECs) are well recognized as key regulators in leukocyte adhesion and migration in response to bacterial infection. Prolyl hydroxylase domain (PHD)-2 protein, a major PHD in ECs, plays a critical role in intracellular oxygen homeostasis, angiogenesis, and pulmonary hypertension. However, its role in endothelial inflammatory response is unclear. We investigated the role of PHD2 in ECs during endotoxin-induced lung inflammatory responses with EC-specific PHD2 inducible knockout mice. On lipopolysaccharide challenge, PHD2 depletion in ECs attenuates lipopolysaccharide-induced increases of lung vascular permeability, edema, and inflammatory cell infiltration. Moreover, EC-specific PHD2 inducible knockout mice exhibit improved adherens junction integrity and endothelial barrier function. Mechanistically, PHD2 knockdown induces vascular endothelial cadherin in mouse lung microvascular primary endothelial cells. Moreover, PHD2 knockdown can increase hypoxia-inducible factor/vascular endothelial protein tyrosine phosphatase signaling and reactive oxygen species-dependent p38 activation, leading to the induction of vascular endothelial cadherin. Data indicate that PHD2 depletion prevents the formation of leaky vessels and edema by regulating endothelial barrier function. It provides direct in vivo evidence to suggest that PHD2 plays a pivotal role in vascular inflammation. The inhibition of endothelial PHD2 activity may be a new therapeutic strategy for acute inflammatory diseases.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Permeabilidad Capilar/efectos de los fármacos , Endotelio Vascular/inmunología , Prolina Dioxigenasas del Factor Inducible por Hipoxia/inmunología , Lipopolisacáridos/toxicidad , Vasculitis/inmunología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/patología , Células Epiteliales Alveolares/inmunología , Células Epiteliales Alveolares/patología , Animales , Cadherinas/genética , Cadherinas/inmunología , Permeabilidad Capilar/genética , Permeabilidad Capilar/inmunología , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Adhesión Celular/inmunología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Movimiento Celular/inmunología , Células Endoteliales/inmunología , Células Endoteliales/patología , Endotelio Vascular/patología , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Leucocitos/inmunología , Leucocitos/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/inmunología , Masculino , Ratones , Ratones Transgénicos , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/inmunología , Estados Unidos , Vasculitis/inducido químicamente , Vasculitis/genética , Vasculitis/patología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología
2.
Circ Res ; 123(4): 477-494, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-30355249

RESUMEN

Our understanding of the role of the vascular endothelium has evolved over the past 2 decades, with the recognition that it is a dynamically regulated organ and that it plays a nodal role in a variety of physiological and pathological processes. Endothelial cells (ECs) are not only a barrier between the circulation and peripheral tissues, but also actively regulate vascular tone, blood flow, and platelet function. Dysregulation of ECs contributes to pathological conditions such as vascular inflammation, atherosclerosis, hypertension, cardiomyopathy, retinopathy, neuropathy, and cancer. The close anatomic relationship between vascular endothelium and highly vascularized metabolic organs/tissues suggests that the crosstalk between ECs and these organs is vital for both vascular and metabolic homeostasis. Numerous reports support that hyperlipidemia, hyperglycemia, and other metabolic stresses result in endothelial dysfunction and vascular complications. However, how ECs may regulate metabolic homeostasis remains poorly understood. Emerging data suggest that the vascular endothelium plays an unexpected role in the regulation of metabolic homeostasis and that endothelial dysregulation directly contributes to the development of metabolic disorders. Here, we review recent studies about the pivotal role of ECs in glucose and lipid homeostasis. In particular, we introduce the concept that the endothelium adjusts its barrier function to control the transendothelial transport of fatty acids, lipoproteins, LPLs (lipoprotein lipases), glucose, and insulin. In addition, we summarize reports that ECs communicate with metabolic cells through EC-secreted factors and we discuss how endothelial dysregulation contributes directly to the development of obesity, insulin resistance, dyslipidemia, diabetes mellitus, cognitive defects, and fatty liver disease.


Asunto(s)
Endotelio Vascular/metabolismo , Metabolismo Energético , Homeostasis , Enfermedades Metabólicas/etiología , Animales , Humanos
3.
Arterioscler Thromb Vasc Biol ; 37(8): 1524-1535, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28596374

RESUMEN

OBJECTIVE: Bacterial endotoxin (lipopolysaccharide)-mediated sepsis involves dysregulated systemic inflammation, which injures the lung and other organs, often fatally. Vascular endothelial cells act as both targets and mediators of lipopolysaccharide-induced inflammatory responses. Dysfunction of endothelium results in increases of proinflammatory cytokine production and permeability leakage. BMPER (bone morphogenetic protein-binding endothelial regulator), an extracellular modulator of bone morphogenetic protein signaling, has been identified as a vital component in chronic endothelial inflammatory responses and atherosclerosis. However, it is unclear whether BMPER also regulates inflammatory response in an acute setting such as sepsis. To address this question, we investigated the role of BMPER during lipopolysaccharide-induced acute lung injury. APPROACH AND RESULTS: Mice missing 1 allele of BMPER (BMPER+/- mice used in the place of BMPER-/- mice that die at birth) were used for lipopolysaccharide challenge. Lipopolysaccharide-induced pulmonary inflammation and injury was reduced in BMPER+/- mice as shown by several measures, including survival rate, infiltration of inflammatory cells, edema, and production of proinflammatory cytokines. Mechanistically, we have demonstrated that BMPER is required and sufficient for the activation of nuclear factor of activated T cells c1. This BMPER-induced nuclear factor of activated T cells activation is coordinated by multiple signaling pathways, including bone morphogenetic protein-independent low-density lipoprotein receptor-related protein 1-extracellular signal-regulated kinase activation, calcineurin signaling, and low-density lipoprotein receptor-related protein 1ß-mediated nuclear factor 45 nuclear export in response to BMPER treatment. CONCLUSIONS: We conclude that BMPER plays a pivotal role in pulmonary inflammatory response, which provides new therapeutic options against sepsis shock. The new signaling pathway initiated by BMPER/low-density lipoprotein receptor-related protein 1 axis broadens our understanding about BMPER's role in vascular homeostasis.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Proteínas Portadoras/metabolismo , Células Endoteliales/metabolismo , Endotoxinas , Pulmón/irrigación sanguínea , Neumonía/metabolismo , Receptores de LDL/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/patología , Animales , Apoptosis , Permeabilidad Capilar , Proteínas Portadoras/genética , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Mediadores de Inflamación/metabolismo , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción NFATC/metabolismo , Proteína del Factor Nuclear 45/metabolismo , Fenotipo , Neumonía/inducido químicamente , Neumonía/genética , Neumonía/patología , Interferencia de ARN , Receptores de LDL/genética , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/genética
4.
Circ Res ; 116(7): 1120-32, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25608528

RESUMEN

RATIONALE: Neointimal hyperplasia characterized by abnormal accumulation of vascular smooth muscle cells (SMCs) is a hallmark of occlusive disorders such as atherosclerosis, postangioplasty restenosis, vein graft stenosis, and allograft vasculopathy. Cyclic nucleotides are vital in SMC proliferation and migration, which are regulated by cyclic nucleotide phosphodiesterases (PDEs). OBJECTIVE: Our goal is to understand the regulation and function of PDEs in SMC pathogenesis of vascular diseases. METHODS AND RESULTS: We performed screening for genes differentially expressed in normal contractile versus proliferating synthetic SMCs. We observed that PDE1C expression was low in contractile SMCs but drastically elevated in synthetic SMCs in vitro and in various mouse vascular injury models in vivo. In addition, PDE1C was highly induced in neointimal SMCs of human coronary arteries. More importantly, injury-induced neointimal formation was significantly attenuated by PDE1C deficiency or PDE1 inhibition in vivo. PDE1 inhibition suppressed vascular remodeling of human saphenous vein explants ex vivo. In cultured SMCs, PDE1C deficiency or PDE1 inhibition attenuated SMC proliferation and migration. Mechanistic studies revealed that PDE1C plays a critical role in regulating the stability of growth factor receptors, such as PDGF receptor ß (PDGFRß) known to be important in pathological vascular remodeling. PDE1C interacts with low-density lipoprotein receptor-related protein-1 and PDGFRß, thus regulating PDGFRß endocytosis and lysosome-dependent degradation in an low-density lipoprotein receptor-related protein-1-dependent manner. A transmembrane adenylyl cyclase cAMP-dependent protein kinase cascade modulated by PDE1C is critical in regulating PDGFRß degradation. CONCLUSIONS: These findings demonstrated that PDE1C is an important regulator of SMC proliferation, migration, and neointimal hyperplasia, in part through modulating endosome/lysosome-dependent PDGFRß protein degradation via low-density lipoprotein receptor-related protein-1.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/fisiología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/enzimología , Neointima/enzimología , Animales , Traumatismos de las Arterias Carótidas/enzimología , Traumatismos de las Arterias Carótidas/patología , División Celular , Movimiento Celular , Células Cultivadas , AMP Cíclico/fisiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/antagonistas & inhibidores , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/deficiencia , Endocitosis/fisiología , Inducción Enzimática , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Lisosomas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Miocitos del Músculo Liso/citología , Neointima/fisiopatología , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Proteolisis , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/fisiología
5.
Arterioscler Thromb Vasc Biol ; 36(2): 350-60, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26634655

RESUMEN

OBJECTIVE: We recently demonstrated that low-density lipoprotein receptor-related protein 1 (LRP1) is required for cardiovascular development in zebrafish. However, what role LRP1 plays in angiogenesis remains to be determined. To better understand the role of LRP1 in endothelial cell function, we investigated how LRP1 regulates mouse retinal angiogenesis. APPROACH AND RESULTS: Depletion of LRP1 in endothelial cells results in increased retinal neovascularization in a mouse model of oxygen-induced retinopathy. Specifically, retinas in mice lacking endothelial LRP1 have more branching points and angiogenic sprouts at the leading edge of the newly formed vasculature. Increased endothelial proliferation as detected by Ki67 staining was observed in LRP1-deleted retinal endothelium in response to hypoxia. Using an array of biochemical and cell biology approaches, we demonstrate that poly(ADP-ribose) polymerase-1 (PARP-1) directly interacts with LRP1 in human retinal microvascular endothelial cells. This interaction between LRP1 and PARP-1 decreases under hypoxic condition. Moreover, LRP1 knockdown results in increased PARP-1 activity and subsequent phosphorylation of both retinoblastoma protein and cyclin-dependent kinase 2, which function to promote cell cycle progression and angiogenesis. CONCLUSIONS: Together, these data reveal a pivotal role for LRP1 in endothelial cell proliferation and retinal neovascularization induced by hypoxia. In addition, we demonstrate for the first time the interaction between LRP1 and PARP-1 and the LRP1-dependent regulation of PARP-1-signaling pathways. These data bring forth the possibility of novel therapeutic approaches for pathological angiogenesis.


Asunto(s)
Proliferación Celular , Células Endoteliales/enzimología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Receptores de LDL/metabolismo , Neovascularización Retiniana/enzimología , Vasos Retinianos/enzimología , Proteínas Supresoras de Tumor/metabolismo , Animales , Ciclo Celular , Hipoxia de la Célula , Quinasa 2 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Genotipo , Células HEK293 , Humanos , Hipoxia/complicaciones , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Ratones Noqueados , Fenotipo , Fosforilación , Poli(ADP-Ribosa) Polimerasa-1 , Interferencia de ARN , Receptores de LDL/deficiencia , Receptores de LDL/genética , Neovascularización Retiniana/etiología , Neovascularización Retiniana/genética , Neovascularización Retiniana/patología , Vasos Retinianos/patología , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética
6.
J Mol Cell Cardiol ; 80: 156-65, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25633836

RESUMEN

PHD3, a member of a family of Prolyl-4 Hydroxylase Domain (PHD) proteins, has long been considered a pro-apoptotic protein. Although the pro-apoptotic effect of PHD3 requires its prolyl hydroxylase activity, it may be independent of HIF-1α, the common substrate of PHDs. PHD3 is highly expressed in the heart, however, its role in cardiomyocyte apoptosis remains unclear. This study was undertaken to determine whether inhibition or depletion of PHD3 inhibits cardiomyocyte apoptosis and attenuates myocardial injury induced by ischemia-reperfusion (I/R). PHD3 knockout mice and littermate controls were subjected to left anterior descending (LAD) coronary artery ligation for 40 min followed by reperfusion. Histochemical analysis using Evan's Blue, triphenyl-tetrazolium chloride and TUNEL staining, demonstrated that myocardial injury and cardiomyocyte apoptosis induced I/R injury were significantly attenuated in PHD3 knockout mice. PHD3 knockout mice exhibited no changes in HIF-1α protein level, the expression of some HIF target genes or the myocardium capillary density at physiological condition. However, depletion of PHD3 further enhanced the induction of HIF-1α protein at hypoxic condition and increased expression of HIF-1α inhibited cardiomyocyte apoptosis induced by hypoxia. In addition, it has been demonstrated that PHD3 plays an important role in ATR/Chk1/p53 pathway. Consistently, a prolyl hydroxylase inhibitor or depletion of PHD3 significantly inhibits the activation of Chk1 and p53 in cardiomyocytes and the subsequent apoptosis induced by doxorubicin, hydrogen peroxide or hypoxia/reoxygenation. Taken together, these data suggest that depletion of PHD3 leads to increased stabilization of HIF-1α and inhibition of DNA damage response, both of which may contribute to the cardioprotective effect seen with depletion of PHD3.


Asunto(s)
Apoptosis/genética , Daño por Reperfusión Miocárdica/genética , Miocitos Cardíacos/metabolismo , Procolágeno-Prolina Dioxigenasa/genética , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Línea Celular , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Doxorrubicina/farmacología , Expresión Génica , Genotipo , Hipoxia/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones , Ratones Noqueados , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Procolágeno-Prolina Dioxigenasa/metabolismo , Ratas
7.
Dev Biol ; 395(1): 111-9, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25173872

RESUMEN

The establishment of the coronary circulation is one of the final critical steps during heart development. Despite decades of research, our understanding of how the coronary vasculature develops and connects to the aorta remains limited. This review serves two specific purposes: it addresses recent advances in understanding the origin of the coronary endothelium, and it then focuses on the last crucial step of coronary vasculature development, the connection of the coronary plexus to the aorta. The chick and quail animal models have yielded most of the information for how these connections form, starting with a fine network of vessels that penetrate the aorta and coalesce to form two distinct ostia. Studies in mouse and rat confirm that at least some of these steps are conserved in mammals, but gaps still exist in our understanding of mammalian coronary ostia formation. The signaling cues necessary to guide the coronary plexus to the aorta are also incompletely understood. Hypoxia-inducible transcription factor-1 and its downstream targets are among the few identified genes that promote the formation of the coronary stems. Together, this review summarizes our current knowledge of coronary vascular formation and highlights the significant gaps that remain. In addition, it highlights some of the coronary artery anomalies known to affect human health, demonstrating that even seemingly subtle defects arising from incorrect coronary plexus formation can result in significant health crises.


Asunto(s)
Vasos Coronarios/embriología , Endotelio Vascular/embriología , Corazón/embriología , Modelos Anatómicos , Modelos Cardiovasculares , Animales , Vasos Coronarios/citología , Vasos Coronarios/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corazón/anatomía & histología , Humanos , Células Madre/citología , Células Madre/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 34(9): 2023-32, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24990230

RESUMEN

OBJECTIVE: Reactive oxygen species (ROS) act as signaling molecules during angiogenesis; however, the mechanisms used for such signaling events remain unclear. Stromal cell-derived factor-1α (SDF-1α) is one of the most potent angiogenic chemokines. Here, we examined the role of ROS in the regulation of SDF-1α-dependent angiogenesis. APPROACH AND RESULTS: Bovine aortic endothelial cells were treated with SDF-1α, and intracellular ROS generation was monitored. SDF-1α treatment induced bovine aortic endothelial cell migration and ROS generation, with the majority of ROS generated by bovine aortic endothelial cells at the leading edge of the migratory cells. Antioxidants and nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitors blocked SDF-1α-induced endothelial migration. Furthermore, knockdown of either NOX5 or p22phox (a requisite subunit for NOX1/2/4 activation) significantly impaired endothelial motility and tube formation, suggesting that multiple NOXs regulate SDF-1α-dependent angiogenesis. Our previous study demonstrated that c-Jun N-terminal kinase 3 activity is essential for SDF-1α-dependent angiogenesis. Here, we identified that NOX5 is the dominant NOX required for SDF-1α-induced c-Jun N-terminal kinase 3 activation and that NOX5 and MAP kinase phosphatase 7 (MKP7; the c-Jun N-terminal kinase 3 phosphatase) associate with one another but decrease this interaction on SDF-1α treatment. Furthermore, MKP7 activity was inhibited by SDF-1α, and this inhibition was relieved by NOX5 knockdown, indicating that NOX5 promotes c-Jun N-terminal kinase 3 activation by blocking MKP7 activity. CONCLUSIONS: We conclude that NOX is required for SDF-1α signaling and that intracellular redox balance is critical for SDF-1α-induced endothelial migration and angiogenesis.


Asunto(s)
Quimiocina CXCL12/fisiología , Proteínas de la Membrana/fisiología , NADPH Oxidasas/fisiología , Neovascularización Fisiológica/fisiología , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Aorta , Azoles/farmacología , Bovinos , Movimiento Celular/efectos de los fármacos , Quimiocina CXCL12/farmacología , Fosfatasas de Especificidad Dual/fisiología , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/citología , Técnicas de Silenciamiento del Gen , Hiperglucemia/metabolismo , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/fisiología , Isoindoles , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteína Quinasa 10 Activada por Mitógenos/fisiología , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/fisiología , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , Neovascularización Fisiológica/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Oxidación-Reducción , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
10.
Circ Res ; 111(5): 564-74, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22777006

RESUMEN

RATIONALE: Among the extracellular modulators of Bmp (bone morphogenetic protein) signaling, Bmper (Bmp endothelial cell precursor-derived regulator) both enhances and inhibits Bmp signaling. Recently we found that Bmper modulates Bmp4 activity via a concentration-dependent, endocytic trap-and-sink mechanism. OBJECTIVE: To investigate the molecular mechanisms required for endocytosis of the Bmper/Bmp4 and signaling complex and determine the mechanism of Bmper's differential effects on Bmp4 signaling. METHODS AND RESULTS: Using an array of biochemical and cell biology techniques, we report that LRP1 (LDL receptor-related protein 1), a member of the LDL receptor family, acts as an endocytic receptor for Bmper and a coreceptor of Bmp4 to mediate the endocytosis of the Bmper/Bmp4 signaling complex. Furthermore, we demonstrate that LRP1-dependent Bmper/Bmp4 endocytosis is essential for Bmp4 signaling, as evidenced by the phenotype of lrp1-deficient zebrafish, which have abnormal cardiovascular development and decreased Smad1/5/8 activity in key vasculogenic structures. CONCLUSIONS: Together, these data reveal a novel role for LRP1 in the regulation of Bmp4 signaling by regulating receptor complex endocytosis. In addition, these data introduce LRP1 as a critical regulator of vascular development. These observations demonstrate Bmper's ability to fine-tune Bmp4 signaling at the single-cell level, unlike the spatial regulatory mechanisms applied by other Bmp modulators.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Proteínas Portadoras/metabolismo , Endocitosis/fisiología , Células Endoteliales/fisiología , Neovascularización Fisiológica/fisiología , Receptores de LDL/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Proteína Morfogenética Ósea 4/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Proteínas Portadoras/genética , Línea Celular , Movimiento Celular/fisiología , Células Endoteliales/citología , Células HEK293 , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones , Fenotipo , ARN Interferente Pequeño/genética , Receptores de LDL/genética , Transducción de Señal/fisiología , Proteínas Supresoras de Tumor/genética , Pez Cebra , Proteínas de Pez Cebra/genética
11.
Arterioscler Thromb Vasc Biol ; 32(9): 2214-22, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22772758

RESUMEN

OBJECTIVE: Bone morphogenetic proteins (Bmps) are important mediators of inflammation and atherosclerosis, though their mechanism of action is not fully understood. To better understand the contribution of the Bmp signaling pathway in vascular inflammation, we investigated the role of Bmper (Bmp endothelial cell precursor-derived regulator), an extracellular Bmp modulator, in an induced in vivo model of inflammation and atherosclerosis. METHODS AND RESULTS: We crossed apolipoprotein E-deficient (ApoE(-/-)) mice with mice missing 1 allele of Bmper (Bmper(+/-) mice used in the place of Bmper(-/-) mice that die at birth) and measured the development of atherosclerosis in mice fed a high-fat diet. Bmper haploinsufficiency in ApoE(-/-) mice (Bmper(+/-);ApoE(-/-) mice) led to a more severe phenotype compared with Bmper(+/+);ApoE(-/-) mice. Bmper(+/-);ApoE(-/-) mice also exhibited increased Bmp activity in the endothelial cells in both the greater and lesser curvatures of the aortic arch, suggesting a role for Bmper in regulating Bmp-mediated inflammation associated with laminar and oscillatory shear stress. Small interfering RNA knockdown of Bmper in human umbilical vein endothelial cells caused a dramatic increase in the inflammatory markers intracellular adhesion molecule 1 and vascular cell adhesion molecule 1 at rest and after exposure to oscillatory and laminar shear stress. CONCLUSIONS: We conclude that Bmper is a critical regulator of Bmp-mediated vascular inflammation and that the fine-tuning of Bmp and Bmper levels is essential in the maintenance of normal vascular homeostasis.


Asunto(s)
Enfermedades de la Aorta/prevención & control , Aterosclerosis/prevención & control , Proteínas Portadoras/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Endoteliales/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/prevención & control , Animales , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/inmunología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Proteína Morfogenética Ósea 4/metabolismo , Proteínas Portadoras/genética , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Células Endoteliales/patología , Genotipo , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Molécula 1 de Adhesión Intercelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Interferencia de ARN , Proteínas Recombinantes/metabolismo , Estrés Mecánico , Factores de Tiempo , Transfección , Calcificación Vascular/inmunología , Calcificación Vascular/metabolismo , Calcificación Vascular/prevención & control , Molécula 1 de Adhesión Celular Vascular/metabolismo
12.
Nat Metab ; 5(8): 1382-1394, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37443356

RESUMEN

Chronic inflammation is associated with increased risk and poor prognosis of heart failure; however, the precise mechanism that provokes sustained inflammation in the failing heart remains elusive. Here we report that depletion of carnitine acetyltransferase (CRAT) promotes cholesterol catabolism through bile acid synthesis pathway in cardiomyocytes. Intracellular accumulation of bile acid or intermediate, 7α-hydroxyl-3-oxo-4-cholestenoic acid, induces mitochondrial DNA stress and triggers cGAS-STING-dependent type I interferon responses. Furthermore, type I interferon responses elicited by CRAT deficiency substantially increase AIM2 expression and AIM2-dependent inflammasome activation. Genetic deletion of cardiomyocyte CRAT in mice of both sexes results in myocardial inflammation and dilated cardiomyopathy, which can be reversed by combined depletion of caspase-1, cGAS or AIM2. Collectively, we identify a mechanism by which cardiac energy metabolism, cholesterol homeostasis and cardiomyocyte-intrinsic innate immune responses are interconnected via a CRAT-mediated bile acid synthesis pathway, which contributes to chronic myocardial inflammation and heart failure progression.


Asunto(s)
Carnitina O-Acetiltransferasa , Insuficiencia Cardíaca , Animales , Femenino , Masculino , Ratones , Carnitina O-Acetiltransferasa/genética , Carnitina O-Acetiltransferasa/metabolismo , Colesterol , Inmunidad Innata , Inflamación , Interferón Tipo I , Nucleotidiltransferasas/metabolismo
13.
Arterioscler Thromb Vasc Biol ; 31(2): 306-12, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21071685

RESUMEN

OBJECTIVE: To investigate the role of recombinant human interleukin-11 (rhIL-11) on in vivo mobilization of CD34(+)/vascular endothelial growth factor receptor (VEGFR) 2(+) mononuclear cells and collateral vessel remodeling in a mouse model of hindlimb ischemia. METHODS AND RESULTS: We observed that treatment of Sv129 mice with continuous infusion of 200-µg/kg rhIL-11 per day led to in vivo mobilization of CD34(+)/VEGFR2(+) cells that peaked at 72 hours. Sv129 mice pretreated with rhIL-11 for 72 hours before femoral artery ligation showed a 3-fold increase in plantar vessel perfusion, leading to faster blood flow recovery; and a 20-fold increase in circulating CD34(+)/VEGFR2(+) cells after 8 days of rhIL-11 treatment. Histologically, experimental mice had a 3-fold increase in collateral vessel luminal diameter after 21 days of rhIL-11 treatment and a 4.4-fold influx of perivascular CD34(+)/VEGFR2(+) cells after 8 days of therapy. Functionally, rhIL-11-treated mice showed better hindlimb appearance and use scores when compared with syngeneic mice treated with PBS under the same experimental conditions. CONCLUSIONS: These novel findings show that rhIL-11 promotes in vivo mobilization of CD34(+)/VEGFR2(+) mononuclear cells, enhances collateral vessel growth, and increases recovery of perfusion after femoral artery ligation. Thus, rhIL-11 has a promising role for development as an adjunctive treatment of patients with peripheral vascular disease.


Asunto(s)
Arteria Femoral/efectos de los fármacos , Arteria Femoral/crecimiento & desarrollo , Miembro Posterior/irrigación sanguínea , Interleucina-11/farmacología , Isquemia/metabolismo , Proteínas Recombinantes/farmacología , Animales , Antígenos CD34/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Arteria Femoral/citología , Humanos , Isquemia/patología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Ligadura , Ratones , Neovascularización Fisiológica/fisiología , Factor de Transcripción STAT3/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
14.
Proc Natl Acad Sci U S A ; 106(14): 5675-80, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19307591

RESUMEN

The chemokine stromal cell-derived factor-1alpha (SDF-1alpha) is a pivotal player in angiogenesis. It is capable of influencing such cellular processes as tubulogenesis and endothelial cell migration, yet very little is known about the actual signaling events that mediate SDF-1alpha-induced endothelial cell function. In this report, we describe the identification of an intricate SDF-1alpha-induced signaling cascade that involves endothelial nitric oxide synthase (eNOS), JNK3, and MAPK phosphatase 7 (MKP7). We demonstrate that the SDF-1alpha-induced activation of JNK3, critical for endothelial cell migration, depends on the prior activation of eNOS. Specifically, activation of eNOS leads to production of NO and subsequent nitrosylation of MKP7, rendering the phosphatase inactive and unable to inhibit the activation of JNK3. These observations reinforce the importance of nitric oxide and S-nitrosylation in angiogenesis and provide a mechanistic pathway for SDF-1alpha-induced endothelial cell migration. In addition, the discovery of this interactive network of pathways provides novel and unexpected therapeutic targets for angiogenesis-dependent diseases.


Asunto(s)
Movimiento Celular , Quimiocina CXCL12/fisiología , Fosfatasas de Especificidad Dual/metabolismo , Endotelio Vascular/citología , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Animales , Bovinos , Células Cultivadas , Células Endoteliales , Humanos , Transducción de Señal
15.
STAR Protoc ; 3(2): 101392, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35600933

RESUMEN

Metabolic switches play a critical role in the pathophysiology of cardiac diseases, including heart failure. Here, we describe an assay for long-chain fatty acid oxidation in neonatal mouse cardiomyocytes by using a SeaHorse Flux Analyzer (Agilent). This protocol is a simplified but robust adaptation of the standard protocol that enables metabolic measurements in cells isolated from transgenic mouse models, which can be timesaving and informative. Cell isolation and culture represent a critical point that may require bench optimization. For complete details on the use and execution of this protocol, please refer to Angelini et al. (2021).


Asunto(s)
Miocitos Cardíacos , Smegmamorpha , Animales , Animales Recién Nacidos , Ácidos Grasos , Ratones , Respiración
16.
Cell Biochem Funct ; 29(4): 334-41, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21506136

RESUMEN

During vascular development, endothelial cells are exposed to a variety of rapidly changing factors, including fluctuating oxygen levels. We have previously shown that ankyrin repeat and suppressor of cytokine signalling box protein 4 (ASB4) is the most highly differentially expressed gene in the vascular lineage during early differentiation and is expressed in the embryonic vasculature at a time when oxygen tension is rising because of the onset of placental blood flow. To further our understanding of the regulation of ASB4 expression in endothelial cells, we tested the effect of various stressors for their ability to alter ASB4 expression in the immortalized murine endothelial cell lines MS1 and SVR. ASB4 expression is decreased during hypoxic insult and shear stress, whereas it is increased in response to tumour necrosis factor alpha (TNF-α). Further investigation indicated that nuclear factor kappa B (NF-κB) is the responsible transcription factor involved in the TNF-α-induced upregulation of ASB4, placing ASB4 downstream of NF-κB in the TNF-α signalling cascade and identifying it as a potential regulator for TNF-α's numerous functions associated with inflammation, angiogenesis and apoptosis.


Asunto(s)
Endotelio Vascular/metabolismo , Oxígeno/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Línea Celular Transformada , Regulación del Desarrollo de la Expresión Génica , Hipoxia/metabolismo , Ratones , FN-kappa B/metabolismo , Transducción de Señal , Estrés Mecánico , Transfección
17.
Cell Rep ; 37(1): 109767, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34610308

RESUMEN

Cardiac metabolism is a high-oxygen-consuming process, showing a preference for long-chain fatty acid (LCFA) as the fuel source under physiological conditions. However, a metabolic switch (favoring glucose instead of LCFA) is commonly reported in ischemic or late-stage failing hearts. The mechanism regulating this metabolic switch remains poorly understood. Here, we report that loss of PHD2/3, the cellular oxygen sensors, blocks LCFA mitochondria uptake and ß-oxidation in cardiomyocytes. In high-fat-fed mice, PHD2/3 deficiency improves glucose metabolism but exacerbates the cardiac defects. Mechanistically, we find that PHD2/3 bind to CPT1B, a key enzyme of mitochondrial LCFA uptake, promoting CPT1B-P295 hydroxylation. Further, we show that CPT1B-P295 hydroxylation is indispensable for its interaction with VDAC1 and LCFA ß-oxidation. Finally, we demonstrate that a CPT1B-P295A mutant constitutively binds to VDAC1 and rescues LCFA metabolism in PHD2/3-deficient cardiomyocytes. Together, our data identify an oxygen-sensitive regulatory axis involved in cardiac metabolism.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Animales , Carnitina/metabolismo , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/genética , Dieta Alta en Grasa , Ácidos Grasos/química , Glucosa/metabolismo , Hidroxilación , Prolina Dioxigenasas del Factor Inducible por Hipoxia/deficiencia , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Peroxidación de Lípido , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mutagénesis Sitio-Dirigida , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Procolágeno-Prolina Dioxigenasa/deficiencia , Procolágeno-Prolina Dioxigenasa/genética , Unión Proteica , Canal Aniónico 1 Dependiente del Voltaje/genética
18.
Nat Commun ; 12(1): 5296, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489478

RESUMEN

The vascular endothelium is present within metabolic organs and actively regulates energy metabolism. Here we show osteocalcin, recognized as a bone-secreted metabolic hormone, is expressed in mouse primary endothelial cells isolated from heart, lung and liver. In human osteocalcin promoter-driven green fluorescent protein transgenic mice, green fluorescent protein signals are enriched in endothelial cells lining aorta, small vessels and capillaries and abundant in aorta, skeletal muscle and eye of adult mice. The depletion of lipoprotein receptor-related protein 1 induces osteocalcin through a Forkhead box O -dependent pathway in endothelial cells. Whereas depletion of osteocalcin abolishes the glucose-lowering effect of low-density lipoprotein receptor-related protein 1 depletion, osteocalcin treatment normalizes hyperglycemia in multiple mouse models. Mechanistically, osteocalcin receptor-G protein-coupled receptor family C group 6 member A and insulin-like-growth-factor-1 receptor are in the same complex with osteocalcin and required for osteocalcin-promoted insulin signaling pathway. Therefore, our results reveal an endocrine/paracrine role of endothelial cells in regulating insulin sensitivity, which may have therapeutic implications in treating diabetes and insulin resistance through manipulating vascular endothelium.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Glucosa/metabolismo , Hiperglucemia/genética , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Osteocalcina/genética , Animales , Células Endoteliales/patología , Endotelio Vascular/patología , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Prueba de Tolerancia a la Glucosa , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Hiperglucemia/metabolismo , Hiperglucemia/patología , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/deficiencia , Masculino , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteoblastos/patología , Osteocalcina/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
19.
Nat Commun ; 12(1): 1927, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772019

RESUMEN

Accumulating evidence suggests that chronic inflammation of metabolic tissues plays a causal role in obesity-induced insulin resistance. Yet, how specific endothelial factors impact metabolic tissues remains undefined. Bone morphogenetic protein (BMP)-binding endothelial regulator (BMPER) adapts endothelial cells to inflammatory stress in diverse organ microenvironments. Here, we demonstrate that BMPER is a driver of insulin sensitivity. Both global and endothelial cell-specific inducible knockout of BMPER cause hyperinsulinemia, glucose intolerance and insulin resistance without increasing inflammation in metabolic tissues in mice. BMPER can directly activate insulin signaling, which requires its internalization and interaction with Niemann-Pick C1 (NPC1), an integral membrane protein that transports intracellular cholesterol. These results suggest that the endocrine function of the vascular endothelium maintains glucose homeostasis. Of potential translational significance, the delivery of BMPER recombinant protein or its overexpression alleviates insulin resistance and hyperglycemia in high-fat diet-fed mice and Leprdb/db (db/db) diabetic mice. We conclude that BMPER exhibits therapeutic potential for the treatment of diabetes.


Asunto(s)
Proteínas Portadoras/genética , Endotelio Vascular/metabolismo , Resistencia a la Insulina/genética , Transducción de Señal/genética , Animales , Glucemia/metabolismo , Proteínas Portadoras/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Intolerancia a la Glucosa/genética , Células HEK293 , Humanos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Niemann-Pick C1/genética , Proteína Niemann-Pick C1/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo
20.
Circ Res ; 98(10): 1331-9, 2006 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-16601226

RESUMEN

We have used global gene expression analysis to establish a comprehensive list of candidate genes in the developing vasculature during embryonic (ES) cell differentiation in vitro. A large set of genes, including growth factors, cell surface molecules, transcriptional factors, and members of several signal transduction pathways that are known to be involved in vasculogenesis or angiogenesis, were found to have expression patterns as expected. Some unknown or functionally uncharacterized genes were differentially regulated in flk1+ cells compared with flk1- cells, suggesting possible roles for these genes in vascular commitment. Particularly, multiple components of the Wnt signaling pathway were differentially regulated in flk1+ cells, including Wnt proteins, their receptors, downstream transcriptional factors, and other components belonging to this pathway. Activation of the Wnt signal was able to expand vascular progenitor populations whereas suppression of Wnt activity reduced flk1+ populations. Suppression of Wnt signaling also inhibited the formation of matured vascular capillary-like structures during late stages of embryoid body differentiation. These data indicate a requisite and ongoing role for Wnt activity during vascular development, and the gene expression profiles identify candidate components of this pathway that participate in vascular cell differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Embrión de Mamíferos/citología , Endotelio Vascular/citología , Perfilación de la Expresión Génica , Transducción de Señal/fisiología , Células Madre/citología , Proteínas Wnt/metabolismo , Animales , Linaje de la Célula , Células Cultivadas , Ratones , Células Madre/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA