Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(2): 545-559.e22, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33357446

RESUMEN

Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other 'omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Imagenología Tridimensional , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Escherichia coli/enzimología , Escherichia coli/metabolismo , Espectrometría de Masas , Simulación de Dinámica Molecular , Presión Osmótica , Fosforilación , Proteolisis , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Estrés Fisiológico
2.
Cell ; 172(1-2): 358-372.e23, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29307493

RESUMEN

Metabolite-protein interactions control a variety of cellular processes, thereby playing a major role in maintaining cellular homeostasis. Metabolites comprise the largest fraction of molecules in cells, but our knowledge of the metabolite-protein interactome lags behind our understanding of protein-protein or protein-DNA interactomes. Here, we present a chemoproteomic workflow for the systematic identification of metabolite-protein interactions directly in their native environment. The approach identified a network of known and novel interactions and binding sites in Escherichia coli, and we demonstrated the functional relevance of a number of newly identified interactions. Our data enabled identification of new enzyme-substrate relationships and cases of metabolite-induced remodeling of protein complexes. Our metabolite-protein interactome consists of 1,678 interactions and 7,345 putative binding sites. Our data reveal functional and structural principles of chemical communication, shed light on the prevalence and mechanisms of enzyme promiscuity, and enable extraction of quantitative parameters of metabolite binding on a proteome-wide scale.


Asunto(s)
Metaboloma , Proteoma/metabolismo , Proteómica/métodos , Transducción de Señal , Programas Informáticos , Regulación Alostérica , Sitios de Unión , Escherichia coli , Metabolómica/métodos , Unión Proteica , Mapas de Interacción de Proteínas , Proteoma/química , Saccharomyces cerevisiae , Análisis de Secuencia de Proteína/métodos
3.
Mol Cell ; 75(4): 859-874.e4, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31351878

RESUMEN

Homologous recombination (HR) is essential for high-fidelity DNA repair during mitotic proliferation and meiosis. Yet, context-specific modifications must tailor the recombination machinery to avoid (mitosis) or enforce (meiosis) the formation of reciprocal exchanges-crossovers-between recombining chromosomes. To obtain molecular insight into how crossover control is achieved, we affinity purified 7 DNA-processing enzymes that channel HR intermediates into crossovers or noncrossovers from vegetative cells or cells undergoing meiosis. Using mass spectrometry, we provide a global characterization of their composition and reveal mitosis- and meiosis-specific modules in the interaction networks. Functional analyses of meiosis-specific interactors of MutLγ-Exo1 identified Rtk1, Caf120, and Chd1 as regulators of crossing-over. Chd1, which transiently associates with Exo1 at the prophase-to-metaphase I transition, enables the formation of MutLγ-dependent crossovers through its conserved ability to bind and displace nucleosomes. Thus, rewiring of the HR network, coupled to chromatin remodeling, promotes context-specific control of the recombination outcome.


Asunto(s)
Intercambio Genético/fisiología , Meiosis/fisiología , Mitosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Yeast ; 41(7): 458-472, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38874348

RESUMEN

The yeast Saccharomyces cerevisiae and most eukaryotes carry two 5' → 3' exoribonuclease paralogs. In yeast, they are called Xrn1, which shuttles between the nucleus and the cytoplasm, and executes major cytoplasmic messenger RNA (mRNA) decay, and Rat1, which carries a strong nuclear localization sequence (NLS) and localizes to the nucleus. Xrn1 is 30% identical to Rat1 but has an extra ~500 amino acids C-terminal extension. In the cytoplasm, Xrn1 can degrade decapped mRNAs during the last round of translation by ribosomes, a process referred to as "cotranslational mRNA decay." The division of labor between the two enzymes is still enigmatic and serves as a paradigm for the subfunctionalization of many other paralogs. Here we show that Rat1 is capable of functioning in cytoplasmic mRNA decay, provided that Rat1 remains cytoplasmic due to its NLS disruption (cRat1). This indicates that the physical segregation of the two paralogs plays roles in their specific functions. However, reversing segregation is not sufficient to fully complement the Xrn1 function. Specifically, cRat1 can partially restore the cell volume, mRNA stability, the proliferation rate, and 5' → 3' decay alterations that characterize xrn1Δ cells. Nevertheless, cotranslational decay is only slightly complemented by cRat1. The use of the AlphaFold prediction for cRat1 and its subsequent docking with the ribosome complex and the sequence conservation between cRat1 and Xrn1 suggest that the tight interaction with the ribosome observed for Xrn1 is not maintained in cRat1. Adding the Xrn1 C-terminal domain to Rat1 does not improve phenotypes, which indicates that lack of the C-terminal is not responsible for partial complementation. Overall, during evolution, it appears that the two paralogs have acquired specific characteristics to make functional partitioning beneficial.


Asunto(s)
Exorribonucleasas , Estabilidad del ARN , ARN Mensajero , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Citoplasma/metabolismo , Biosíntesis de Proteínas
5.
Genome Res ; 29(12): 1974-1984, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740578

RESUMEN

Cryptic transcription is widespread and generates a heterogeneous group of RNA molecules of unknown function. To improve our understanding of cryptic transcription, we investigated their transcription start site (TSS) usage, chromatin organization, and posttranscriptional consequences in Saccharomyces cerevisiae We show that TSSs of chromatin-sensitive internal cryptic transcripts retain comparable features of canonical TSSs in terms of DNA sequence, directionality, and chromatin accessibility. We define the 5' and 3' boundaries of cryptic transcripts and show that, contrary to RNA degradation-sensitive ones, they often overlap with the end of the gene, thereby using the canonical polyadenylation site, and associate to polyribosomes. We show that chromatin-sensitive cryptic transcripts can be recognized by ribosomes and may produce truncated polypeptides from downstream, in-frame start codons. Finally, we confirm the presence of the predicted polypeptides by reanalyzing N-terminal proteomic data sets. Our work suggests that a fraction of chromatin-sensitive internal cryptic promoters initiates the transcription of alternative truncated mRNA isoforms. The expression of these chromatin-sensitive isoforms is conserved from yeast to human, expanding the functional consequences of cryptic transcription and proteome complexity.


Asunto(s)
Cromatina , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sitio de Iniciación de la Transcripción , Cromatina/genética , Cromatina/metabolismo , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidad del ARN , ARN de Hongos/biosíntesis , ARN de Hongos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Mol Syst Biol ; 17(7): e10442, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34293219

RESUMEN

While informative, protein amounts and physical protein associations do not provide a full picture of protein function. This Commentary highlights the potential of structural and stability proteomic technologies to derive new insights in biology and medicine.


Asunto(s)
Proteoma , Proteómica , Biofisica , Proteoma/genética
7.
Rheumatol Int ; 40(2): 263-272, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31435754

RESUMEN

Few studies have compared the efficacy of switching from etanercept to adalimumab in the real-life setting in rheumatoid arthritis (RA) and psoriatic arthritis (PsA). This study evaluated the 2-year retention rate and 12-month efficacy of adalimumab in RA and PsA patients, previously treated with etanercept. RA and PsA patients from 11 Italian Rheumatology Units received adalimumab after first-line etanercept failure. Two-year adalimumab retention rate was calculated by the Kaplan-Meier method and Cox proportional hazard models were developed to examine predictors of drug persistence. Univariate and multivariate logistic regression analyses were developed to examine potential predictors of 12-month DAS-28 remission. The study population included 117 RA (disease duration of 10.1 ± 7.7 years and baseline DAS28-ESR of 4.97 ± 1.3) and 102 PsA (disease duration of 7.1 ± 5.1 years and baseline DAPSA of 24.6 ± 11.8). The 2-year retention rate was 48.2% in RA and 56.5% in PsA patients. Concomitant methotrexate treatment was not associated with increased drug survival in both groups. Similarly, cause of etanercept discontinuation or treatment duration was not associated with retention rate. 12-month remission and low disease activity were achieved, respectively, in 27.3% and 23.9% of RA patients and 27.4% and 23.5% PsA of patients. In multivariate models, etanercept discontinuation due to inefficacy (OR 0.27, 95% CI 1.03-0.73; p = 0.009) and baseline DAS-28 (OR 0.45, 95% CI 0.29-0.69; p < 0.001) remained significant negative predictors of remission in RA patients. No variable was associated with remission in PsA patients. Adalimumab after etanercept failure was highly effective and safe in both RA and PsA patients.


Asunto(s)
Adalimumab/uso terapéutico , Artritis Psoriásica/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Sustitución de Medicamentos , Etanercept/uso terapéutico , Cumplimiento de la Medicación , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Adulto , Anciano , Antirreumáticos/uso terapéutico , Artritis Psoriásica/fisiopatología , Artritis Reumatoide/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Insuficiencia del Tratamiento
8.
Chromosoma ; 122(3): 175-90, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23546018

RESUMEN

The successful transmission of complete genomes from mother to daughter cells during cell divisions requires the structural re-organization of chromosomes into individualized and compact structures that can be segregated by mitotic spindle microtubules. Multi-subunit protein complexes named condensins play a central part in this chromosome condensation process, but the mechanisms behind their actions are still poorly understood. An increasing body of evidence suggests that, in addition to their role in shaping mitotic chromosomes, condensin complexes have also important functions in directing the three-dimensional arrangement of chromatin fibers within the interphase nucleus. To fulfill their different functions in genome organization, the activity of condensin complexes and their localization on chromosomes need to be strictly controlled. In this review article, we outline the regulation of condensin function by phosphorylation and other posttranslational modifications at different stages of the cell cycle. We furthermore discuss how these regulatory mechanisms are used to control condensin binding to specific chromosome domains and present a comprehensive overview of condensin's interaction partners in these processes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/genética , Animales , División Celular , Cromosomas/genética , Proteínas de Unión al ADN/genética , Humanos , Complejos Multiproteicos/genética , Fosforilación , Unión Proteica
9.
Sci Rep ; 14(1): 8469, 2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605098

RESUMEN

Obesity is associated with increased risk and worse prognosis of many tumours including those of the breast and of the esophagus. Adipokines released from the peritumoural adipose tissue promote the metastatic potential of cancer cells, suggesting the existence of a crosstalk between the adipose tissue and the surrounding tumour. Mitochondrial Ca2+ signaling contributes to the progression of carcinoma of different origins. However, whether adipocyte-derived factors modulate mitochondrial Ca2+ signaling in tumours is unknown. Here, we show that conditioned media derived from adipose tissue cultures (ADCM) enriched in precursor cells impinge on mitochondrial Ca2+ homeostasis of target cells. Moreover, in modulating mitochondrial Ca2+ responses, a univocal crosstalk exists between visceral adipose tissue-derived preadipocytes and esophageal cancer cells, and between subcutaneous adipose tissue-derived preadipocytes and triple-negative breast cancer cells. An unbiased metabolomic analysis of ADCM identified creatine and creatinine for their ability to modulate mitochondrial Ca2+ uptake, migration and proliferation of esophageal and breast tumour cells, respectively.


Asunto(s)
Tejido Adiposo , Neoplasias , Humanos , Tejido Adiposo/patología , Adipocitos , Obesidad/complicaciones , Grasa Subcutánea/patología , Neoplasias/patología
10.
Cell Death Dis ; 15(1): 58, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233399

RESUMEN

MitoKATP is a channel of the inner mitochondrial membrane that controls mitochondrial K+ influx according to ATP availability. Recently, the genes encoding the pore-forming (MITOK) and the regulatory ATP-sensitive (MITOSUR) subunits of mitoKATP were identified, allowing the genetic manipulation of the channel. Here, we analyzed the role of mitoKATP in determining skeletal muscle structure and activity. Mitok-/- muscles were characterized by mitochondrial cristae remodeling and defective oxidative metabolism, with consequent impairment of exercise performance and altered response to damaging muscle contractions. On the other hand, constitutive mitochondrial K+ influx by MITOK overexpression in the skeletal muscle triggered overt mitochondrial dysfunction and energy default, increased protein polyubiquitination, aberrant autophagy flux, and induction of a stress response program. MITOK overexpressing muscles were therefore severely atrophic. Thus, the proper modulation of mitoKATP activity is required for the maintenance of skeletal muscle homeostasis and function.


Asunto(s)
Adenosina Trifosfato , Canales de Potasio , Adenosina Trifosfato/metabolismo , Canales de Potasio/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias Cardíacas/metabolismo
11.
Food Chem ; 439: 138124, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38064839

RESUMEN

The evolving field of food technology is increasingly dedicated to developing functional foods. This study explored bioactive peptides from sunflower protein isolate (SPI), obtained from defatted flour, a by-product of the oil processing industry. SPI underwent simulated gastrointestinal digestion and the obtained peptide-enriched fraction (PEF) showed antioxidant properties in vivo, in zebrafish. Among the peptides present in PEF identified by mass spectrometry analysis, we selected those with antioxidant properties by in silico evaluation, considering their capability to interact with Keap1, key protein in the regulation of antioxidant response. The selected peptides were synthesized and evaluated in a cellular model. As a result, DVAMPVPK, VETGVIKPG, TTHTNPPPEAE, LTHPQHQQQGPSTG and PADVTPEEKPEV activated Keap1/Nrf2 pathway leading to Antioxidant Response Element-regulated enzymes upregulation. Since the crosstalk between Nrf2 and NF-κB is well known, the potential anti-inflammatory activity of the peptides was assessed and principally PADVTPEEKPEV showed good features both as antioxidant and anti-inflammatory molecule.


Asunto(s)
Antioxidantes , Helianthus , Animales , Antioxidantes/química , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Helianthus/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Pez Cebra/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Antiinflamatorios/farmacología , Modelos Animales , Simulación por Computador
12.
Curr Opin Struct Biol ; 82: 102648, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37423038

RESUMEN

Cross-linking mass spectrometry (XL-MS) can provide a wealth of information on endogenous protein-protein interaction (PPI) networks and protein binding interfaces. These features make XL-MS an attractive tool to support the development of PPI-targeting drugs. Though not yet widely used, applications of XL-MS to drug characterization are beginning to emerge. Here, we compare XL-MS to established structural proteomics methods in drug research, discuss the current state and remaining challenges of XL-MS technology, and provide a perspective on the future role XL-MS can play in drug development, with a particular emphasis on PPI modulators.


Asunto(s)
Mapas de Interacción de Proteínas , Espectrometría de Masas/métodos , Unión Proteica , Reactivos de Enlaces Cruzados/química
13.
Nat Protoc ; 18(3): 659-682, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36526727

RESUMEN

Proteins regulate biological processes by changing their structure or abundance to accomplish a specific function. In response to a perturbation, protein structure may be altered by various molecular events, such as post-translational modifications, protein-protein interactions, aggregation, allostery or binding to other molecules. The ability to probe these structural changes in thousands of proteins simultaneously in cells or tissues can provide valuable information about the functional state of biological processes and pathways. Here, we present an updated protocol for LiP-MS, a proteomics technique combining limited proteolysis with mass spectrometry, to detect protein structural alterations in complex backgrounds and on a proteome-wide scale. In LiP-MS, proteins undergo a brief proteolysis in native conditions followed by complete digestion in denaturing conditions, to generate structurally informative proteolytic fragments that are analyzed by mass spectrometry. We describe advances in the throughput and robustness of the LiP-MS workflow and implementation of data-independent acquisition-based mass spectrometry, which together achieve high reproducibility and sensitivity, even on large sample sizes. We introduce MSstatsLiP, an R package dedicated to the analysis of LiP-MS data for the identification of structurally altered peptides and differentially abundant proteins. The experimental procedures take 3 d, mass spectrometric measurement time and data processing depend on sample number and statistical analysis typically requires ~1 d. These improvements expand the adaptability of LiP-MS and enable wide use in functional proteomics and translational applications.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteoma , Proteolisis , Proteoma/análisis , Reproducibilidad de los Resultados , Espectrometría de Masas/métodos
14.
Commun Biol ; 6(1): 947, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723200

RESUMEN

Metabolite-level regulation of enzyme activity is important for microbes to cope with environmental shifts. Knowledge of such regulations can also guide strain engineering for biotechnology. Here we apply limited proteolysis-small molecule mapping (LiP-SMap) to identify and compare metabolite-protein interactions in the proteomes of two cyanobacteria and two lithoautotrophic bacteria that fix CO2 using the Calvin cycle. Clustering analysis of the hundreds of detected interactions shows that some metabolites interact in a species-specific manner. We estimate that approximately 35% of interacting metabolites affect enzyme activity in vitro, and the effect is often minor. Using LiP-SMap data as a guide, we find that the Calvin cycle intermediate glyceraldehyde-3-phosphate enhances activity of fructose-1,6/sedoheptulose-1,7-bisphosphatase (F/SBPase) from Synechocystis sp. PCC 6803 and Cupriavidus necator in reducing conditions, suggesting a convergent feed-forward activation of the cycle. In oxidizing conditions, glyceraldehyde-3-phosphate inhibits Synechocystis F/SBPase by promoting enzyme aggregation. In contrast, the glycolytic intermediate glucose-6-phosphate activates F/SBPase from Cupriavidus necator but not F/SBPase from Synechocystis. Thus, metabolite-level regulation of the Calvin cycle is more prevalent than previously appreciated.


Asunto(s)
Bacterias , Gliceraldehído , Biotecnología , Análisis por Conglomerados , Gliceraldehído 3-Fosfato , Fosfatos
15.
Nat Commun ; 14(1): 910, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36801853

RESUMEN

Transcriptional memory, by which cells respond faster to repeated stimuli, is key for cellular adaptation and organism survival. Chromatin organization has been shown to play a role in the faster response of primed cells. However, the contribution of post-transcriptional regulation is not yet explored. Here we perform a genome-wide screen to identify novel factors modulating transcriptional memory in S. cerevisiae in response to galactose. We find that depletion of the nuclear RNA exosome increases GAL1 expression in primed cells. Our work shows that gene-specific differences in intrinsic nuclear surveillance factor association can enhance both gene induction and repression in primed cells. Finally, we show that primed cells present altered levels of RNA degradation machinery and that both nuclear and cytoplasmic mRNA decay modulate transcriptional memory. Our results demonstrate that mRNA post-transcriptional regulation, and not only transcription regulation, should be considered when investigating gene expression memory.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Expresión Génica , Estabilidad del ARN/genética , Transcripción Genética
16.
Nat Cell Biol ; 23(10): 1085-1094, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616026

RESUMEN

Cells respond to stress by blocking translation, rewiring metabolism and forming transient messenger ribonucleoprotein assemblies called stress granules (SGs). After stress release, re-establishing homeostasis and disassembling SGs requires ATP-consuming processes. However, the molecular mechanisms whereby cells restore ATP production and disassemble SGs after stress remain poorly understood. Here we show that upon stress, the ATP-producing enzyme Cdc19 forms inactive amyloids, and that their rapid re-solubilization is essential to restore ATP production and disassemble SGs in glucose-containing media. Cdc19 re-solubilization is initiated by the glycolytic metabolite fructose-1,6-bisphosphate, which directly binds Cdc19 amyloids, allowing Hsp104 and Ssa2 chaperone recruitment and aggregate re-solubilization. Fructose-1,6-bisphosphate then promotes Cdc19 tetramerization, which boosts its activity to further enhance ATP production and SG disassembly. Together, these results describe a molecular mechanism that is critical for stress recovery and directly couples cellular metabolism with SG dynamics via the regulation of reversible Cdc19 amyloids.


Asunto(s)
Amiloide/química , Proteínas de Ciclo Celular/química , Gránulos Citoplasmáticos/química , Piruvato Quinasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fructosadifosfatos/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Piruvato Quinasa/química , Piruvato Quinasa/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
17.
JAMA Intern Med ; 181(1): 24-31, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33080005

RESUMEN

Importance: The coronavirus disease 2019 (COVID-19) pandemic is threatening billions of people worldwide. Tocilizumab has shown promising results in retrospective studies in patients with COVID-19 pneumonia with a good safety profile. Objective: To evaluate the effect of early tocilizumab administration vs standard therapy in preventing clinical worsening in patients hospitalized with COVID-19 pneumonia. Design, Setting, and Participants: Prospective, open-label, randomized clinical trial that randomized patients hospitalized between March 31 and June 11, 2020, with COVID-19 pneumonia to receive tocilizumab or standard of care in 24 hospitals in Italy. Cases of COVID-19 were confirmed by polymerase chain reaction method with nasopharyngeal swab. Eligibility criteria included COVID-19 pneumonia documented by radiologic imaging, partial pressure of arterial oxygen to fraction of inspired oxygen (Pao2/Fio2) ratio between 200 and 300 mm Hg, and an inflammatory phenotype defined by fever and elevated C-reactive protein. Interventions: Patients in the experimental arm received intravenous tocilizumab within 8 hours from randomization (8 mg/kg up to a maximum of 800 mg), followed by a second dose after 12 hours. Patients in the control arm received supportive care following the protocols of each clinical center until clinical worsening and then could receive tocilizumab as a rescue therapy. Main Outcome and Measures: The primary composite outcome was defined as entry into the intensive care unit with invasive mechanical ventilation, death from all causes, or clinical aggravation documented by the finding of a Pao2/Fio2 ratio less than 150 mm Hg, whichever came first. Results: A total of 126 patients were randomized (60 to the tocilizumab group; 66 to the control group). The median (interquartile range) age was 60.0 (53.0-72.0) years, and the majority of patients were male (77 of 126, 61.1%). Three patients withdrew from the study, leaving 123 patients available for the intention-to-treat analyses. Seventeen patients of 60 (28.3%) in the tocilizumab arm and 17 of 63 (27.0%) in the standard care group showed clinical worsening within 14 days since randomization (rate ratio, 1.05; 95% CI, 0.59-1.86). Two patients in the experimental group and 1 in the control group died before 30 days from randomization, and 6 and 5 patients were intubated in the 2 groups, respectively. The trial was prematurely interrupted after an interim analysis for futility. Conclusions and Relevance: In this randomized clinical trial of hospitalized adult patients with COVID-19 pneumonia and Pao2/Fio2 ratio between 200 and 300 mm Hg who received tocilizumab, no benefit on disease progression was observed compared with standard care. Further blinded, placebo-controlled randomized clinical trials are needed to confirm the results and to evaluate possible applications of tocilizumab in different stages of the disease. Trial Registration: ClinicalTrials.gov Identifier: NCT04346355; EudraCT Identifier: 2020-001386-37.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Mortalidad Hospitalaria , Unidades de Cuidados Intensivos/estadística & datos numéricos , Respiración Artificial/estadística & datos numéricos , Insuficiencia Respiratoria/terapia , Anciano , Análisis de los Gases de la Sangre , Proteína C-Reactiva/metabolismo , COVID-19/metabolismo , COVID-19/fisiopatología , Progresión de la Enfermedad , Terminación Anticipada de los Ensayos Clínicos , Femenino , Fiebre , Hospitalización , Humanos , Italia , Masculino , Inutilidad Médica , Persona de Mediana Edad , Receptores de Interleucina-6/antagonistas & inhibidores , Insuficiencia Respiratoria/fisiopatología , SARS-CoV-2
18.
Nat Commun ; 11(1): 4200, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32826910

RESUMEN

Chemoproteomics is a key technology to characterize the mode of action of drugs, as it directly identifies the protein targets of bioactive compounds and aids in the development of optimized small-molecule compounds. Current approaches cannot identify the protein targets of a compound and also detect the interaction surfaces between ligands and protein targets without prior labeling or modification. To address this limitation, we here develop LiP-Quant, a drug target deconvolution pipeline based on limited proteolysis coupled with mass spectrometry that works across species, including in human cells. We use machine learning to discern features indicative of drug binding and integrate them into a single score to identify protein targets of small molecules and approximate their binding sites. We demonstrate drug target identification across compound classes, including drugs targeting kinases, phosphatases and membrane proteins. LiP-Quant estimates the half maximal effective concentration of compound binding sites in whole cell lysates, correctly discriminating drug binding to homologous proteins and identifying the so far unknown targets of a fungicide research compound.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Aprendizaje Automático , Proteoma , Proteómica/métodos , Sitios de Unión , Botrytis , Supervivencia Celular , Biología Computacional/métodos , Descubrimiento de Drogas/métodos , Células HeLa , Humanos , Ligandos , Espectrometría de Masas , Fosfotransferasas/metabolismo , Unión Proteica , Proteolisis , Saccharomyces cerevisiae
19.
J Proteomics ; 225: 103862, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32535145

RESUMEN

Aggregation-prone proteins (APPs) have been implicated in numerous human diseases but the underlying mechanisms are incompletely understood. Here we comparatively analysed cellular responses to different APPs. Our study is based on a systematic proteomic and phosphoproteomic analysis of a set of yeast proteotoxicity models expressing different human disease-related APPs, which accumulate intracellular APP inclusions and exhibit impaired growth. Clustering and functional enrichment analyses of quantitative proteome-level data reveal that the cellular response to APP expression, including the chaperone response, is specific to the APP, and largely differs from the response to a more generalized proteotoxic insult such as heat shock. We further observe an intriguing association between the subcellular location of inclusions and the location of the cellular response, and provide a rich dataset for future mechanistic studies. Our data suggest that care should be taken when designing research models to study intracellular aggregation, since the cellular response depends markedly on the specific APP and the location of inclusions. Further, therapeutic approaches aimed at boosting protein quality control in protein aggregation diseases should be tailored to the subcellular location affected by inclusion formation. SIGNIFICANCE: We have examined the global cellular response, in terms of protein abundance and phosphorylation changes, to the expression of five human neurodegeneration-associated, aggregation-prone proteins (APPs) in a set of isogenic yeast models. Our results show that the cellular response to each APP is unique to that protein, is different from the response to thermal stress, and is associated with processes at the subcellular location of APP inclusion formation. These results further our understanding of how cells, in a model organism, respond to expression of APPs implicated in neurodegenerative diseases like Parkinson's, Alzheimer's, and ALS. They have implications for mechanisms of toxicity as well as of protective responses in the cell. The specificity of the response to each APP means that research models of these diseases should be tailored to the APP in question. The subcellular localization of the response suggest that therapeutic interventions should also be targeted within the cell.


Asunto(s)
Enfermedades Neurodegenerativas , Proteómica , Humanos , Proteoma
20.
Front Med (Lausanne) ; 7: 42, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32154255

RESUMEN

Background: Aim of this study was to search for any difference in the outcome of patients with adult onset Still's disease (AOSD) treated with anakinra (ANK) in relation with the interval between disease onset and the start of anti-interleukin(IL)-1 treatment and according with the different lines of ANK treatment. Patients and Methods: One hundred and forty-one AOSD patients treated with ANK have been retrospectively assessed. Statistically significant differences (p < 0.05) were analyzed in the frequency of ANK effectiveness, primary or secondary inefficacy to ANK and rate of resolution of clinical and laboratory AOSD manifestations after 3, 6, and 12 months since ANK treatment according with different lines of treatment and different times between AOSD onset and start of ANK. Results: No significant differences were identified in the ANK effectiveness and frequency of primary or secondary inefficacy for patients starting ANK within 6 months (p = 0.19, p = 0.14, and p = 0.81, respectively) or 12 months (p = 0.37, p = 0.23, and p = 0.81, respectively) since AOSD onset compared with patients starting ANK thereafter; no significant differences were identified in ANK effectiveness and primary or secondary inefficacy according with different lines of ANK treatment (p = 0.06, p = 0.19, and p = 0.13, respectively). Patients starting ANK within 6 and 12 months since AOSD onset showed a significantly quicker decrease of erythrocyte sedimentation rate and C-reactive protein than observed among patients undergoing ANK treatment after 6 and 12 months. The number of swollen joints at the 3 month follow-up visit was significantly lower among patients undergoing ANK within 6 months since AOSD onset (p = 0.01), while no significance was identified at the 6 and 12 month assessments (p = 0.23 and p = 0.45, respectively). At the 3 and 6 month visits, the number of swollen joints was significantly higher among patients previously treated with conventional and biological disease modifying anti-rheumatic drugs (DMARDs) compared with those formerly treated only with conventional DMARDs (p < 0.017). Conclusions: Clinical and therapeutic outcomes are substantially independent of how early ANK treatment is started in AOSD patients. However, a faster ANK effectiveness in controlling systemic inflammation and resolving articular manifestations may be observed in patients benefiting from IL-1 inhibition as soon as after disease onset.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA