Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pflugers Arch ; 476(4): 533-543, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38110744

RESUMEN

Pendrin (SLC26A4) is an anion exchanger from the SLC26 transporter family which is mutated in human patients affected by Pendred syndrome, an autosomal recessive disease characterized by sensoneurinal deafness and hypothyroidism. Pendrin is also expressed in the kidney where it mediates the exchange of internal HCO3- for external Cl- at the apical surface of renal type B and non-A non-B-intercalated cells. Studies using pendrin knockout mice have first revealed that pendrin is essential for renal base excretion. However, subsequent studies have demonstrated that pendrin also controls chloride absorption by the distal nephron and that this mechanism is critical for renal NaCl balance. Furthermore, pendrin has been shown to control vascular volume and ultimately blood pressure. This review summarizes the current knowledge about how pendrin is linking renal acid-base regulation to blood pressure control.


Asunto(s)
Riñón , Nefronas , Animales , Ratones , Humanos , Presión Sanguínea/fisiología , Transportadores de Sulfato , Riñón/metabolismo , Nefronas/metabolismo , Cloruro de Sodio , Cloruros/metabolismo , Proteínas de Transporte de Anión/genética
2.
Skin Res Technol ; 30(3): e13638, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38454567

RESUMEN

BACKGROUND: Skin wound healing is a complex mechanism which requires a lot of energy, mainly provided by mitochondrial respiration. However, little is known about the mitochondrial bioenergetics of mice skin. We sought to develop a microplate-based assay to directly measure oxygen consumption in whole mice skin with the goal of identifying mitochondrial dysfunction in diabetic skin using an extracellular flux. MATERIALS AND METHODS: Different parameters were optimized to efficiently measure the oxygen consumption rate (OCR). First, the most pertinent skin side of wild-type mice was first determined. Then, concentrations of mitochondrial inhibitors were then optimized to get the best efficacy. Finally, punch sizes were modulated to get the best OCR profile. RESULTS: Dermis had the best metabolic activity side of the skin. Unlike the increased concentrations of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) and rotenone/antimycin A, which showed no improvement of these drugs' effects, varying the skin punch size was successful. Finally, type II diabetic (T2D) skin produced less ATP through mitochondrial metabolism and had a greater non-mitochondrial oxygen consumption than wild-type or type I diabetic (T1D) skin. CONCLUSION: Here we designed, for the first time, a reliable protocol to measure mitochondria function in whole mouse skin. Our optimized protocol was valuable in assessing alterations associated with diabetes and could be applied to future studies of pathological human skin metabolism.


Asunto(s)
Diabetes Mellitus Experimental , Ratones , Humanos , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Mitocondrias/metabolismo , Metabolismo Energético , Consumo de Oxígeno , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología
3.
Front Cell Infect Microbiol ; 14: 1342354, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476165

RESUMEN

Transplantation is the treatment of choice for several end-stage organ defects: it considerably improves patient survival and quality of life. However, post-transplant recipients may experience episodes of rejection that can favor or ultimately lead to graft loss. Graft maintenance requires a complex and life-long immunosuppressive treatment. Different immunosuppressive drugs (i.e., calcineurin inhibitors, glucocorticoids, biological immunosuppressive agents, mammalian target of rapamycin inhibitors, and antiproliferative or antimetabolic agents) are used in combination to mitigate the immune response against the allograft. Unfortunately, the use of these antirejection agents may lead to opportunistic infections, metabolic (e.g., post-transplant diabetes mellitus) or cardiovascular (e.g., arterial hypertension) disorders, cancer (e.g., non-Hodgkin lymphoma) and other adverse effects. Lately, immunosuppressive drugs have also been associated with gut microbiome alterations, known as dysbiosis, and were shown to affect gut microbiota-derived short-chain fatty acids (SCFA) production. SCFA play a key immunomodulatory role in physiological conditions, and their impairment in transplant patients could partly counterbalance the effect of immunosuppressive drugs leading to the activation of deleterious pathways and graft rejection. In this review, we will first present an overview of the mechanisms of graft rejection that are prevented by the immunosuppressive protocol. Next, we will explain the dynamic changes of the gut microbiota during transplantation, focusing on SCFA. Finally, we will describe the known functions of SCFA in regulating immune-inflammatory reactions and discuss the impact of SCFA impairment in immunosuppressive drug treated patients.


Asunto(s)
Microbioma Gastrointestinal , Trasplante de Órganos , Humanos , Calidad de Vida , Inmunosupresores , Inmunidad
4.
Therapie ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38871543

RESUMEN

BACKGROUND: Prescribing tramadol in children raises safety concerns. In Europe, tramadol is still approved and licensed for use in children over 1-3 years of age, depending on the country. In this context, the authors report a case of a tramadol overdose in a 5-year-old-child with a medical history of homozygous sickle cell disease. METHODS: Tramadol and M1 were quantified using liquid chromatography with a diode array detection method. CYP2D6 genotype was determined using a next generation sequencing platform (MISeq, Illumina). RESULTS: Tramadol and M1 were quantified in blood respectively at 5.48 and 1.32µg/mL at admission, at 0.77 and 0.35µg/mL 12hours later, and at 0.32 and 0.18µg/mL 20hours later. The patient was predicted as a CYP2D6 normal metabolizer (*35/*29). CONCLUSION: One of the most important difficulties with the use of tramadol in children relates to its pharmacokinetic (PK) properties. Indeed, tramadol's PK is characterized by a great variability related to: (i) anatomical/physiological factors that impact the volume of distribution (Vd); (ii) CYP2D6 genetic polymorphisms. Considering such an issue is particularly relevant to prevent poisoning. In the reported case, the plasma elimination half-life was estimated at 6.3h, significantly more than those reported in 2-8 year-old children (about 3h). This discrepancy does not seem related to genetic polymorphisms but rather to the Vd. Indeed, the patient was predicted to be a CYP2D6 normal metabolizer (*35/*29). The case presented here highlights the risk associated with the tramadol use in children and emphasizes the importance of considering PK variability among this population. Such variability necessitates greater caution in prescribing tramadol in children and highlights the importance of therapeutic education for families of children treated with this painkiller.

5.
Therapie ; 2024 Jun 05.
Artículo en Francés | MEDLINE | ID: mdl-38876950

RESUMEN

The administration of aminoglycosides can induce nephrotoxicity or ototoxicity, which can be monitored through pharmacological therapeutic drug monitoring. However, there are cases of genetic predisposition to ototoxicity related to the MT-RNR1 gene, which may occur from the first administrations. Pharmacogenetic analysis recommendations have recently been proposed by the Clinical Pharmacogenetics Implementation Consortium (CPIC). The Francophone Pharmacogenetics Network (RNPGx) provides a bibliographic synthesis of this genetic predisposition, as well as professional recommendations. The MT-RNR1 gene codes for mitochondrial 12S rRNA, which constitutes the small subunit of the mitochondrial ribosome. Three variants can be identified: the variants m.1555A>G and m.1494C>T of the MT-RNR1 gene have a 'high' level of evidence regarding the risk of ototoxicity. The variant m.1095T>C has a 'moderate' level of evidence. The search for these variants can be performed in the laboratory if the administration of aminoglycosides can be delayed after obtaining the result. However, if the treatment is urgent, there is currently no rapid test available in France (a 'point-of-care' test is authorized in Great Britain). RNPGx considers: (1) the search for the m.1555A>G, m.1494C>T variants as 'highly recommended' and the m.1095T>C variant as 'moderately recommended' before the administration of an aminoglycoside (if compatible with the medical context). It should be noted that the level of heteroplasmy detected does not modify the recommendation; (2) pharmacogenetic analysis is currently not feasible in situations of short-term aminoglycoside administration, in the absence of an available analytical solution (rapid test to be evaluated in France); (3) the retrospective analysis in case of aminoglycoside-induced ototoxicity is 'recommended'; (4) analysis of relatives is 'recommended'. Through this summary, RNPGx proposes an updated review of the MT-RNR1-aminoglycoside gene-drug pair to serve as a basis for adapting practices regarding pharmacogenetic analysis related to aminoglycoside treatment.

6.
Life Sci ; 351: 122792, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38857657

RESUMEN

AIMS: Drug-induced enteropathy is often associated with the therapeutic use of certain glucuronidated drugs. One such drug is mycophenolic acid (MPA), a well-established immunosuppressant of which gastrointestinal adverse effects are a major concern. The role of bacterial ß-glucuronidase (ß-G) from the gut microbiota in MPA-induced enteropathy has recently been discovered. Bacterial ß-G hydrolyzes MPAG, the glucuronide metabolite of MPA excreted in the bile, leading to the digestive accumulation of MPA that would favor in turn these adverse events. We therefore hypothesized that taming bacterial ß-G activity might reduce MPA digestive exposure and prevent its toxicity. MAIN METHODS: By using a multiscale approach, we evaluated the effect of increasing concentrations of MPA on intestinal epithelial cells (Caco-2 cell line) viability, proliferation, and migration. Then, we investigated the inhibitory properties of amoxapine, a previously described bacterial ß-G inhibitor, by using molecular dynamics simulations, and evaluated its efficiency in blocking MPAG hydrolysis in an Escherichia coli-based ß-G activity assay. The pharmacological effect of amoxapine was evaluated in a mouse model. KEY FINDINGS: We observed that MPA impairs intestinal epithelial cell homeostasis. Amoxapine efficiently blocks the hydrolysis of MPAG to MPA and significantly reduces digestive exposure to MPA in mice. As a result, administration of amoxapine in MPA-treated mice significantly attenuated gastrointestinal lesions. SIGNIFICANCE: Collectively, these results suggest that the digestive accumulation of MPA is involved in the pathophysiology of MPA-gastrointestinal adverse effects. This study provides a proof-of-concept of the therapeutic potential of bacterial ß-G inhibitors in glucuronidated drug-induced enteropathy.


Asunto(s)
Biotransformación , Microbioma Gastrointestinal , Glucuronidasa , Glucurónidos , Ácido Micofenólico , Ácido Micofenólico/metabolismo , Ácido Micofenólico/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Glucuronidasa/metabolismo , Glucuronidasa/antagonistas & inhibidores , Humanos , Animales , Ratones , Glucurónidos/metabolismo , Células CACO-2 , Masculino , Inmunosupresores/farmacología , Inmunosupresores/toxicidad , Inmunosupresores/metabolismo , Enfermedades Intestinales/inducido químicamente , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/metabolismo , Enfermedades Intestinales/microbiología , Proliferación Celular/efectos de los fármacos , Glicoproteínas
7.
Sci Data ; 11(1): 734, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971846

RESUMEN

A vast silvicultural experiment was set up in 1982 nearby the town of M'Baïki in the Central African Republic to monitor the recovery of tropical forests after disturbance. The M'Baïki experiment consists of ten 4-ha Permanent Sample Plots (PSPs) that were assigned to three silvicultural treatments in 1986 according to a random block design. In each plot, all trees with a girth at breast height greater than 30 cm were spatially located, numbered, measured, and determined botanically. Girth, mortality and newly recruited trees, were monitored almost annually over the 1982-2022 period with inventory campaigns for 35 years. The data were earlier used to fit growth and population models, to study the species composition dynamics, and the effect of silvicultural treatments on tree diversity and aboveground biomass. Here, we present new information on the forest stand structure dynamics and tree demography. The data released from this paper cover the three control plots and constitute a major contribution for further studies about the biodiversity of intact tropical forests.


Asunto(s)
Bosques , Árboles , Clima Tropical , República Centroafricana , Biodiversidad , Biomasa , África Central
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA