RESUMEN
Missense and truncating variants in the X-chromosome-linked CLCN4 gene, resulting in reduced or complete loss-of-function (LOF) of the encoded chloride/proton exchanger ClC-4, were recently demonstrated to cause a neurocognitive phenotype in both males and females. Through international clinical matchmaking and interrogation of public variant databases we assembled a database of 90 rare CLCN4 missense variants in 90 families: 41 unique and 18 recurrent variants in 49 families. For 43 families, including 22 males and 33 females, we collated detailed clinical and segregation data. To confirm causality of variants and to obtain insight into disease mechanisms, we investigated the effect on electrophysiological properties of 59 of the variants in Xenopus oocytes using extended voltage and pH ranges. Detailed analyses revealed new pathophysiological mechanisms: 25% (15/59) of variants demonstrated LOF, characterized by a "shift" of the voltage-dependent activation to more positive voltages, and nine variants resulted in a toxic gain-of-function, associated with a disrupted gate allowing inward transport at negative voltages. Functional results were not always in line with in silico pathogenicity scores, highlighting the complexity of pathogenicity assessment for accurate genetic counselling. The complex neurocognitive and psychiatric manifestations of this condition, and hitherto under-recognized impacts on growth, gastrointestinal function, and motor control are discussed. Including published cases, we summarize features in 122 individuals from 67 families with CLCN4-related neurodevelopmental condition and suggest future research directions with the aim of improving the integrated care for individuals with this diagnosis.
Asunto(s)
Trastornos del Neurodesarrollo , Masculino , Femenino , Humanos , Trastornos del Neurodesarrollo/genética , Mutación Missense , Genes Ligados a X , Fenotipo , Canales de Cloruro/genéticaRESUMEN
BACKGROUND: The mechanism of anion selectivity in the human kidney chloride channels ClC-Ka and ClC-Kb is unknown. However, it has been thought to be very similar to that of other channels and antiporters of the CLC protein family, and to rely on anions interacting with a conserved Ser residue (Sercen) at the center of three anion binding sites in the permeation pathway Scen. In both CLC channels and antiporters, mutations of Sercen alter the anion selectivity. Structurally, the side chain of Sercen of CLC channels and antiporters typically projects into the pore and coordinates the anion bound at Scen. METHODS: To investigate the role of several residues in anion selectivity of ClC-Ka, we created mutations that resulted in amino acid substitutions in these residues. We also used electrophysiologic techniques to assess the properties of the mutants. RESULTS: Mutations in ClC-Ka that change Sercen to Gly, Pro, or Thr have only minor effects on anion selectivity, whereas the mutations in residues Y425A, F519A, and Y520A increase the NO3-/Cl- permeability ratio, with Y425A having a particularly strong effect. CONCLUSION: s ClC-Ka's mechanism of anion selectivity is largely independent of Sercen, and it is therefore unique in the CLC protein family. We identified the residue Y425 in ClC-Ka-and the corresponding residue (A417) in the chloride channel ClC-0-as residues that contribute to NO3- discrimination in these channels. This work provides important and timely insight into the relationship between structure and function for the kidney chloride channels ClC-Ka and ClC-Kb, and for CLC proteins in general.
Asunto(s)
Canales de Cloruro/metabolismo , Riñón/metabolismo , Proteínas/genética , Sustitución de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular , Humanos , Modelos Moleculares , Mutación , Técnicas de Placa-Clamp , Proteínas/metabolismo , Valores de Referencia , Transducción de Señal , Xenopus laevisRESUMEN
Ca(2+)-activated Cl(-) channels (CaCCs) are key regulators of numerous physiological functions, ranging from electrolyte secretion in airway epithelia to cellular excitability in sensory neurons and muscle fibers. Recently, TMEM16A (ANO1) and -B were shown to be critical components of CaCCs. It is still unknown whether they are also sufficient to form functional CaCCs, or whether association with other subunits is required. Recent reports suggest that the Ca(2+) sensitivity of TMEM16A is mediated by its association with calmodulin, suggesting that functional CaCCs are heteromultimers. To test whether TMEM16A is necessary and sufficient to form functional CaCCs, we expressed, purified, and reconstituted human TMEM16A. The purified protein mediates Ca(2+)-dependent Cl(-) transport with submicromolar sensitivity to Ca(2+), consistent with what is seen in patch-clamp experiments. The channel is synergistically gated by Ca(2+) and voltage, so that opening is promoted by depolarizing potentials. Mutating two conserved glutamates in the TM6-7 intracellular loop selectively abolishes the Ca(2+) dependence of reconstituted TMEM16A, in a manner similar to what was reported for the heterologously expressed channel. Well-characterized CaCC blockers inhibit Cl(-) transport with Kis comparable to those measured for native and heterologously expressed CaCCs. Finally, direct physical interactions between calmodulin and TMEM16A could not be detected in copurification experiments or in functional assays. Our results demonstrate that purified TMEM16A is necessary and sufficient to recapitulate the biophysical and pharmacological properties of native and heterologously expressed CaCCs. Our results also show that association of TMEM16A with other proteins, such as calmodulin, is not required for function.
Asunto(s)
Calmodulina/metabolismo , Canales de Cloruro/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Anoctamina-1 , Transporte Biológico/fisiología , Canales de Cloruro/genética , Cromatografía en Gel , Humanos , Técnicas In Vitro , Activación del Canal Iónico/fisiología , Mutagénesis , Proteínas de Neoplasias/genética , Plásmidos/genética , Análisis de Secuencia de ADN , Células Sf9 , SpodopteraRESUMEN
The nine-member CLC gene family of Cl- chloride-transporting membrane proteins is divided into plasma membrane-localized Cl- channels and endo-/lysosomal Cl-/H+ antiporters. Accessory proteins have been identified for ClC-K and ClC-2 channels and for the lysosomal ClC-7, but not the other CLCs. Here, we identified TMEM9 Domain Family Member B (TMEM9B), a single-span type I transmembrane protein of unknown function, to strongly interact with the neuronal endosomal ClC-3 and ClC-4 transporters. Co-expression of TMEM9B with ClC-3 or ClC-4 dramatically reduced transporter activity in Xenopus oocytes and transfected HEK cells. For ClC-3, TMEM9B also induced a slow component in the kinetics of the activation time course, suggesting direct interaction. Currents mediated by ClC-7 were hardly affected by TMEM9B, and ClC-1 currents were only slightly reduced, demonstrating specific interaction with ClC-3 and ClC-4. We obtained strong evidence for direct interaction by detecting significant Förster Resonance Energy Transfer (FRET), exploiting fluorescence lifetime microscopy-based (FLIM-FRET) techniques between TMEM9B and ClC-3 and ClC-4, but hardly any FRET with ClC-1 or ClC-7. The discovery of TMEM9B as a novel interaction partner of ClC-3 and ClC-4 might have important implications for the physiological role of these transporters in neuronal endosomal homeostasis and for a better understanding of the pathological mechanisms in CLCN3- and CLCN4-related pathological conditions.
RESUMEN
Chloride is one of the most abundant anions in the human body; it is implicated in several physiological processes such as the transmission of action potentials, transepithelial salt transport, maintenance of cellular homeostasis, regulation of osmotic pressure and intracellular pH, and synaptic transmission. The balance between the extracellular and intracellular chloride concentrations is controlled by the interplay of ion channels and transporters embedded in the cellular membranes. Vesicular members of the CLC chloride protein family (vCLCs) are chloride/proton exchangers expressed in the membrane of the intracellular organelles, where they control vesicular acidification and luminal chloride concentration. It is well known that mutations in CLCs cause bone, kidney, and lysosomal genetic diseases. However, the role of CLC exchangers in neurological disorders is only now emerging with the identification of pathogenic CLCN gene variants in patients with severe neuronal and intellectual dysfunctions. This review will provide an overview of the recent advances in understanding the role of the vesicular CLC chloride/proton exchangers in human pathophysiology.
RESUMEN
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate a pacemaking current, I(h), which regulates neuronal excitability and oscillatory activity in the brain. Although all four HCN isoforms are expressed in the brain, the functional contribution of HCN3 is unknown. Using immunohistochemistry, confocal microscopy, and whole-cell patch-clamp recording techniques, we investigated HCN3 function in thalamic intergeniculate leaflet (IGL) neurons, as HCN3 is reportedly preferentially expressed in these cells. We observed that I(h) recorded from IGL, but not ventral geniculate nucleus, neurons in HCN2(+/+) mice and rats activated slowly and were cAMP insensitive, which are hallmarks of HCN3 channels. We also observed strong immunolabeling for HCN3, with no labeling for HCN1 and HCN4, and only very weak labeling for HCN2. Deletion of HCN2 did not alter I(h) characteristics in mouse IGL neurons. These data together indicate that the HCN3 channel isoform generated I(h) in IGL neurons. Intracellular phosphatidylinositol-4,5-bisphosphate (PIP(2)) shifted I(h) activation to more depolarized potentials and accelerated activation kinetics. Upregulation of HCN3 function by PIP(2) augmented low-threshold burst firing and spontaneous oscillations; conversely, depletion of PIP(2) or pharmacologic block of I(h) resulted in a profound inhibition of excitability. The results indicate that functional expression of HCN3 channels in IGL neurons is crucial for intrinsic excitability and rhythmic burst firing, and PIP(2) serves as a powerful modulator of I(h)-dependent properties via an effect on HCN3 channel gating. Since the IGL is a major input to the suprachiasmatic nucleus, regulation of pacemaking function by PIP(2) in the IGL may influence sleep and circadian rhythms.
Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Activación del Canal Iónico/fisiología , Neuronas/fisiología , Periodicidad , Fosfoinositido Fosfolipasa C/metabolismo , Tálamo/fisiología , Animales , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Potenciales de la Membrana/fisiología , Ratones , Neuronas/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio , Ratas , Tálamo/metabolismoRESUMEN
Controlled chloride movement across membranes is essential for a variety of physiological processes ranging from salt homeostasis in the kidneys to acidification of cellular compartments. The CLC family is formed by two, not so distinct, sub-classes of membrane transport proteins: Cl(-) channels and H(+)/Cl(-) exchangers. All CLC's are homodimers with each monomer forming an individual Cl- permeation pathway which appears to be largely unaltered in the two CLC sub-classes. Key residues for ion binding and selectivity are also highly conserved. Most CLC's have large cytosolic carboxy-terminal domains containing two cystathionine beta-synthetase (CBS) domains. The C-termini are critical regulators of protein trafficking and directly modulate Cl- by binding intracellular ATP, H+ or oxidizing compounds. This review focuses on the recent mechanistic insights on the how the structural similarities between CLC channels and transporters translate in unexpected mechanistic analogies between these two sub-classes.
Asunto(s)
Canales de Cloruro/metabolismo , Animales , Antiportadores/química , Antiportadores/metabolismo , Sitios de Unión , Canales de Cloruro/química , Cloruros/metabolismo , Humanos , Transporte Iónico , Modelos Anatómicos , Nucleótidos/metabolismo , Estructura Terciaria de Proteína , ProtonesRESUMEN
ClC-4 and ClC-5 are members of the CLC gene family, with ClC-5 mutated in Dent's disease, a nephropathy associated with low-molecular-mass proteinuria and eventual renal failure. ClC-5 has been proposed to be an electrically shunting Cl- channel in early endosomes, facilitating intraluminal acidification. Motivated by the discovery that certain bacterial CLC proteins are secondary active Cl-/H+ antiporters, we hypothesized that mammalian CLC proteins might not be classical Cl- ion channels but might exhibit Cl(-)-coupled proton transport activity. Here we report that ClC-4 and ClC-5 carry a substantial amount of protons across the plasma membrane when activated by positive voltages, as revealed by measurements of pH close to the cell surface. Both proteins are able to extrude protons against their electrochemical gradient, demonstrating secondary active transport. H+, but not Cl-, transport was abolished when a pore glutamate was mutated to alanine (E211A). ClC-0, ClC-2 and ClC-Ka proteins showed no significant proton transport. The muscle channel ClC-1 exhibited a small H+ transport that might be physiologically relevant. For ClC-5, we estimated that Cl- and H+ transport contribute about equally to the total charge movement, raising the possibility that the coupled Cl-/H+ transport of ClC-4 and ClC-5 is of significant magnitude in vivo.
Asunto(s)
Antiportadores/metabolismo , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Protones , Animales , Antiportadores/genética , Canales de Cloruro/genética , Conductividad Eléctrica , Humanos , Concentración de Iones de Hidrógeno , Transporte Iónico , Oocitos/metabolismo , Técnicas de Placa-Clamp , Ratas , Especificidad por SustratoRESUMEN
ClC-Ka and ClC-Kb Cl(-) channels are pivotal for renal salt reabsorption and water balance. There is growing interest in identifying ligands that allow pharmacological interventions aimed to modulate their activity. Starting from available ligands, we followed a rational chemical strategy, accompanied by computational modeling and electrophysiological techniques, to identify the molecular requisites for binding to a blocking or to an activating binding site on ClC-Ka. The major molecular determinant that distinguishes activators from blockers is the level of planarity of the aromatic portions of the molecules: only molecules with perfectly coplanar aromatic groups display potentiating activity. Combining several molecular features of various CLC-K ligands, we discovered that phenyl-benzofuran carboxylic acid derivatives yield the most potent ClC-Ka inhibitors so far described (affinity <10 microM). The increase in affinity compared with 3-phenyl-2-p-chlorophenoxy-propionic acid (3-phenyl-CPP) stems primarily from the conformational constraint provided by the phenyl-benzofuran ring. Several other key structural elements for high blocking potency were identified through a detailed structure-activity relationship study. Surprisingly, some benzofuran-based drugs inhibit ClC-Kb with a similar affinity of <10 microM, thus representing the first inhibitors for this CLC-K isoform identified so far. Based on our data, we established a pharmacophore model that will be useful for the development of drugs targeting CLC-K channels.
Asunto(s)
Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/metabolismo , Animales , Benzofuranos/química , Benzofuranos/farmacología , Unión Competitiva , Canales de Cloruro CLC-2 , Canales de Cloruro/genética , Humanos , Ligandos , Ácido Niflúmico/análogos & derivados , Ácido Niflúmico/química , Ácido Niflúmico/farmacología , Técnicas de Placa-Clamp , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Xenopus laevisRESUMEN
ClC-7 is a chloride-proton antiporter of the CLC protein family. In complex with its accessory protein Ostm-1, ClC-7 localizes to lysosomes and to the osteoclasts' ruffled border, where it plays a critical role in acidifying the resorption lacuna during bone resorption. Gene inactivation in mice causes severe osteopetrosis, neurodegeneration, and lysosomal storage disease. Mutations in the human CLCN7 gene are associated with diverse forms of osteopetrosis. The functional evaluation of ClC-7 variants might be informative with respect to their pathogenicity, but the cellular localization of the protein hampers this analysis. Here we investigated the functional effects of 13 CLCN7 mutations identified in 13 new patients with severe or mild osteopetrosis and a known ADO2 mutation. We mapped the mutated amino acid residues in the homology model of ClC-7 protein, assessed the lysosomal colocalization of ClC-7 mutants and Ostm1 through confocal microscopy, and performed patch-clamp recordings on plasma-membrane-targeted mutant ClC-7. Finally, we analyzed these results together with the patients' clinical features and suggested a correlation between the lack of ClC-7/Ostm1 in lysosomes and severe neurodegeneration. © 2020 American Society for Bone and Mineral Research (ASBMR).
Asunto(s)
Resorción Ósea , Osteopetrosis , Animales , Canales de Cloruro/genética , Humanos , Lisosomas , Ratones , Mutación/genética , Osteoclastos , Osteopetrosis/genéticaRESUMEN
The TMEM16 family of membrane proteins, also known as anoctamins, plays key roles in a variety of physiological functions that range from ion transport to phospholipid scrambling and to regulating other ion channels. The first two family members to be functionally characterized, TMEM16A (ANO1) and TMEM16B (ANO2), form Ca(2+)-activated Cl(-) channels and are important for transepithelial ion transport, olfaction, phototransduction, smooth muscle contraction, nociception, cell proliferation and control of neuronal excitability. The roles of other family members, such as TMEM16C (ANO3), TMEM16D (ANO4), TMEM16F (ANO6), TMEM16G (ANO7) and TMEM16J (ANO9), remain poorly understood and controversial. These homologues were reported to be phospholipid scramblases, ion channels, to have both functions or to be regulatory subunits of other channels. Mutations in TMEM16F cause Scott syndrome, a bleeding disorder caused by impaired Ca(2+)-dependent externalization of phosphatidylserine in activated platelets, suggesting that this homologue might be a scramblase. However, overexpression of TMEM16F has also been associated with a remarkable number of different ion channel types, raising the possibility that this protein might be involved in both ion and lipid transports. The recent identification of an ancestral TMEM16 homologue with intrinsic channel and scramblase activities supports this hypothesis. Thus, the TMEM16 family might have diverged in two or three different subclasses, channels, scramblases and dual-function channel/scramblases. The structural bases and functional implication of such a functional diversity within a single protein family remain to be elucidated and the links between TMEM16 functions and human physiology and pathologies need to be investigated.
Asunto(s)
Canales de Cloruro/química , Canales de Cloruro/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Animales , Anoctamina-1 , Humanos , Moduladores del Transporte de Membrana/química , Moduladores del Transporte de Membrana/metabolismo , Conformación Proteica , Transducción de SeñalRESUMEN
(1) The 2-(p-chlorophenoxy)propionic acid (CPP) modulates in a stereoselective manner the macroscopic chloride conductance (gCl), the electrical parameter sustained by the CLC-1 channel, of skeletal muscle. In order to determine the structural requirements for modulating native gCl and to identify high-affinity ligands, the effects of newly synthesised CPP analogues have been evaluated on gCl of rat EDL muscle fibres by means of the two-microelectrode current-clamp technique. (2) Each type of the following independent modification of CPP structure led to a three- to 10-fold decrease or to a complete lack of gCl-blocking activity: replacement of the electron-attractive chlorine atom of the aromatic ring, substitution of the oxygen atom of the phenoxy group, modification at the chiral centre and substitution of the carboxylic function with a phosphonate one. (3) The analogues bearing a second chlorophenoxy group on the asymmetric carbon atom showed a significant gCl-blocking activity. Similar to racemate CPP, the analogue with this group, spaced by an alkyl chain formed by three methylenic groups, blocked gCl by 45% at 100 micro M. (4) These latter derivatives were tested on heterelogously expressed CLC-1 performing inside-out patch-clamp recordings to further define how interaction between drug and channel protein could take place. Depending on the exact chemical nature of modification, these derivatives strongly blocked CLC-1 with K(D) values at -140 mV ranging from about 4 to 180 micro M. (5) In conclusion, we identified four molecular determinants pivotal for the interaction with the binding site on muscle CLC-1 channels: (a) the carboxylic group that confers the optimal acidity and the negative charge; (b) the chlorophenoxy moiety that might interact with a hydrophobic pocket; (c) the chiral centre that allows the proper spatial disposition of the molecule; (d) an additional phenoxy group that remarkably stabilises the binding by interacting with a second hydrophobic pocket.
Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético/análogos & derivados , Ácido 2-Metil-4-clorofenoxiacético/química , Ácido 2-Metil-4-clorofenoxiacético/farmacología , Canales de Cloruro/biosíntesis , Músculo Esquelético/efectos de los fármacos , Relación Estructura-Actividad Cuantitativa , Estereoisomerismo , Animales , Sitios de Unión , Canales de Cloruro/efectos de los fármacos , Canales de Cloruro/genética , Humanos , Masculino , Músculo Esquelético/fisiología , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Ratas , Ratas Wistar , Xenopus laevisRESUMEN
CLC-type exchangers mediate transmembrane Cl(-) transport. Mutations altering their gating properties cause numerous genetic disorders. However, their transport mechanism remains poorly understood. In conventional models, two gates alternatively expose substrates to the intra- or extracellular solutions. A glutamate was identified as the only gate in the CLCs, suggesting that CLCs function by a nonconventional mechanism. Here we show that transport in CLC-ec1, a prokaryotic homolog, is inhibited by cross-links constraining movement of helix O far from the transport pathway. Cross-linked CLC-ec1 adopts a wild-type-like structure, indicating stabilization of a native conformation. Movements of helix O are transduced to the ion pathway via a direct contact between its C terminus and a tyrosine that is a constitutive element of the second gate of CLC transporters. Therefore, the CLC exchangers have two gates that are coupled through conformational rearrangements outside the ion pathway.
Asunto(s)
Canales de Cloruro/química , Proteínas de Escherichia coli/química , Transporte Biológico/fisiología , Canales de Cloruro/genética , Canales de Cloruro/fisiología , Cristalografía por Rayos X , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Modelos Moleculares , Mutación , Estructura Terciaria de ProteínaRESUMEN
Phospholipid (PL) scramblases disrupt the lipid asymmetry of the plasma membrane, externalizing phosphatidylserine to trigger blood coagulation and mark apoptotic cells. Recently, members of the TMEM16 family of Ca(2+)-gated channels have been shown to be involved in Ca(2+)-dependent scrambling. It is however controversial whether they are scramblases or channels regulating scrambling. Here we show that purified afTMEM16, from Aspergillus fumigatus, is a dual-function protein: it is a Ca(2+)-gated channel, with characteristics of other TMEM16 homologues, and a Ca(2+)-dependent scramblase, with the expected properties of mammalian PL scramblases. Remarkably, we find that a single Ca(2+) site regulates separate transmembrane pathways for ions and lipids. Two other purified TMEM16-channel homologues do not mediate scrambling, suggesting that the family diverged into channels and channel/scramblases. We propose that the spatial separation of the ion and lipid pathways underlies the evolutionary divergence of the TMEM16 family, and that other homologues, such as TMEM16F, might also be dual-function channel/scramblases.
Asunto(s)
Aspergillus fumigatus/metabolismo , Canales de Calcio/metabolismo , Calcio/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Fosfolípidos/metabolismo , Animales , Sitios de Unión , Cloruros/metabolismo , Proteínas Fúngicas/aislamiento & purificación , Humanos , Activación del Canal Iónico , Transporte Iónico , Iones , Metabolismo de los Lípidos , Mamíferos/metabolismoRESUMEN
Active exchangers dissipate the gradient of one substrate to accumulate nutrients, export xenobiotics and maintain cellular homeostasis. Mechanistic studies have suggested that two fundamental properties are shared by all exchangers: substrate binding is antagonistic, and coupling is maintained by preventing shuttling of the empty transporter. The CLC H(+)/Cl(-) exchangers control the homeostasis of cellular compartments in most living organisms, but their transport mechanism remains unclear. We show that substrate binding to CLC-ec1 is synergistic rather than antagonistic: chloride binding induces protonation of a crucial glutamate. The simultaneous binding of H(+) and Cl(-) gives rise to a fully loaded state that is incompatible with conventional transport mechanisms. Mutations in the Cl(-) transport pathway identically alter the stoichiometries of H(+)/Cl(-) exchange and binding. We propose that the thermodynamics of synergistic substrate binding, rather than the kinetics of conformational changes and ion binding, determine the stoichiometry of transport.
Asunto(s)
Canales de Cloruro/metabolismo , Cloro/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Protones , Canales de Cloruro/genética , Cloruros/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutación , Unión Proteica , Especificidad por Sustrato , TermodinámicaRESUMEN
CLC-5 is a H(+)/Cl(-) exchanger that is expressed primarily in endosomes but can traffic to the plasma membrane in overexpression systems. Mutations altering the expression or function of CLC-5 lead to Dent's disease. Currents mediated by this transporter show extreme outward rectification and are inhibited by acidic extracellular pH. The mechanistic origins of both phenomena are currently not well understood. It has been proposed that rectification arises from the voltage dependence of a H(+) transport step, and that inhibition of CLC-5 currents by low extracellular pH is a result of a reduction in the driving force for exchange caused by a pH gradient. We show here that the pH dependence of CLC-5 currents arises from H(+) binding to a single site located halfway through the transmembrane electric field and driving the transport cycle in a less permissive direction, rather than a reduction in the driving force. We propose that protons bind to the extracellular gating glutamate E211 in CLC-5. It has been shown that CLC-5 becomes severely uncoupled when SCN(-) is the main charge carrier: H(+) transport is drastically reduced while the rate of anion movement is increased. We found that in these conditions, rectification and pH dependence are unaltered. This implies that H(+) translocation is not the main cause of rectification. We propose a simple transport cycle model that qualitatively accounts for these findings.
Asunto(s)
Canales de Cloruro/metabolismo , Cloruros/metabolismo , Activación del Canal Iónico , Animales , Sitios de Unión , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/química , Canales de Cloruro/genética , Ácido Glutámico , Humanos , Concentración de Iones de Hidrógeno , Cinética , Potenciales de la Membrana , Conformación Proteica , Relación Estructura-Actividad , XenopusRESUMEN
The two human CLC Cl(-) channels, ClC-Ka and ClC-Kb, are almost exclusively expressed in kidney and inner ear epithelia. Mutations in the genes coding for ClC-Kb and barttin, an essential CLC-K channel beta subunit, lead to Bartter syndrome. We performed a biophysical analysis of the modulatory effect of extracellular Ca(2+) and H(+) on ClC-Ka and ClC-Kb in Xenopus oocytes. Currents increased with increasing [Ca(2+)](ext) without full saturation up to 50 mM. However, in the absence of Ca(2+), ClC-Ka currents were still 20% of currents in 10 mM [Ca(2+)](ext), demonstrating that Ca(2+) is not strictly essential for opening. Vice versa, ClC-Ka and ClC-Kb were blocked by increasing [H(+)](ext) with a practically complete block at pH 6. Ca(2+) and H(+) act as gating modifiers without changing the single-channel conductance. Dose-response analysis suggested that two protons are necessary to induce block with an apparent pK of approximately 7.1. A simple four-state allosteric model described the modulation by Ca(2+) assuming a 13-fold higher Ca(2+) affinity of the open state compared with the closed state. The quantitative analysis suggested separate binding sites for Ca(2+) and H(+). A mutagenic screen of a large number of extracellularly accessible amino acids identified a pair of acidic residues (E261 and D278 on the loop connecting helices I and J), which are close to each other but positioned on different subunits of the channel, as a likely candidate for forming an intersubunit Ca(2+)-binding site. Single mutants E261Q and D278N greatly diminished and the double mutant E261Q/D278N completely abolished modulation by Ca(2+). Several mutations of a histidine residue (H497) that is homologous to a histidine that is responsible for H(+) block in ClC-2 did not yield functional channels. However, the triple mutant E261Q/D278N/H497M completely eliminated H(+) -induced current block. We have thus identified a protein region that is involved in binding these physiologically important ligands and that is likely undergoing conformational changes underlying the complex gating of CLC-K channels.
Asunto(s)
Calcio/metabolismo , Canales de Cloruro/metabolismo , Activación del Canal Iónico , Riñón/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico , Sitios de Unión , Canales de Cloruro/química , Canales de Cloruro/genética , Ácido Glutámico , Humanos , Concentración de Iones de Hidrógeno , Cinética , Potenciales de la Membrana , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Técnicas de Placa-Clamp , Subunidades de Proteína , Relación Estructura-Actividad , XenopusRESUMEN
Ion binding to secondary active transporters triggers a cascade of conformational rearrangements resulting in substrate translocation across cellular membranes. Despite the fundamental role of this step, direct measurements of binding to transporters are rare. We investigated ion binding and selectivity in CLC-ec1, a H(+)-Cl(-) exchanger of the CLC family of channels and transporters. Cl(-) affinity depends on the conformation of the protein: it is highest with the extracellular gate removed and weakens as the transporter adopts the occluded configuration and with the intracellular gate removed. The central ion-binding site determines selectivity in CLC transporters and channels. A serine-to-proline substitution at this site confers NO(3)(-) selectivity upon the Cl(-)-specific CLC-ec1 transporter and CLC-0 channel. We propose that CLC-ec1 operates through an affinity-switch mechanism and that the bases of substrate specificity are conserved in the CLC channels and transporters.
Asunto(s)
Aniones/metabolismo , Canales de Cloruro/metabolismo , Cloro/metabolismo , Proteínas de Escherichia coli/metabolismo , Sustitución de Aminoácidos/genética , Sitios de Unión , Canales de Cloruro/química , Canales de Cloruro/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Nitratos/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Especificidad por SustratoRESUMEN
CLC-K Cl(-) channels belong to the CLC protein family. In kidney and inner ear, they are involved in transepithelial salt transport. Mutations in ClC-Kb lead to Bartter's syndrome, and mutations in the associated subunit barttin produce Bartter's syndrome and deafness. We have previously found that 3-phenyl-CPP blocks hClC-Ka and rClC-K1 from the extracellular side in the pore entrance. Recently, we have shown that niflumic acid (NFA), a nonsteroidal anti-inflammatory fenamate, produces biphasic behavior on human CLC-K channels that suggests the presence of two functionally different binding sites: an activating site and a blocking site. Here, we investigate in more detail the interaction of NFA on CLC-K channels. Mutants that altered block by 3-phenyl-2-(p-chlorophenoxy)propionic acid (CPP) had no effect on NFA block, indicating that the inhibition binding site of NFA is different from that of 3-phenyl-CPP and flufenamic acid. Moreover, NFA does not compete with extracellular Cl(-) ions, suggesting that the binding sites of NFA are not located deep in the pore. Differently from ClC-Ka, on the rat homologue ClC-K1, NFA has only an inhibitory effect. We developed a quantitative model to describe the complex action of NFA on ClC-Ka. The model predicts that ClC-Ka possesses two NFA binding sites: when only one site is occupied, NFA increases ClC-Ka currents, whereas the occupation of both binding sites leads to channel block.
Asunto(s)
Canales de Cloruro/efectos de los fármacos , Riñón/fisiología , Ácido Niflúmico/farmacología , Animales , Sinergismo Farmacológico , Ácido Flufenámico/farmacología , Humanos , Riñón/efectos de los fármacos , Modelos Biológicos , Fenilpropionatos/farmacología , Ratas , Xenopus laevisRESUMEN
CLC-K Cl(-) channels are selectively expressed in kidney and ear, where they are pivotal for salt homeostasis, and loss-of-function mutations of CLC-Kb produce Bartter's syndrome type III. The only ligand known for CLC-K channels is a derivative of the 2-p-chlorophenoxypropionic acid (CPP), 3-phenyl-CPP, which blocks CLC-Ka, but not CLC-Kb. Here we show that in addition to this blocking site, CLC-K channels bear an activating binding site that controls channel opening. Using the voltage-clamp technique on channels expressed in Xenopus laevis oocytes, we found that niflumic acid (NFA) increases CLC-Ka and CLC-Kb currents in the 10 to 1000 microM range. Flufenamic acid (FFA) derivatives or high doses of NFA produced instead an inhibitory effect on CLC-Ka, but not on CLC-Kb, and on blocker-insensitive CLC-Ka mutants, indicating that the activating binding site is distinct from the blocker site. Evaluation of the sensitivity of CLC-Ka to derivatives of NFA and FFA together with a modeling study of these ligands allow us to conclude that one major characteristic of activating compounds is the coplanarity of the two rings of the molecules, whereas block requires a noncoplanar configuration. These molecules provide a starting point for identification of diuretics or drugs useful in the treatment of Bartter's syndrome.