Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 126(4): 583-592, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35049313

RESUMEN

We report first-principles molecular dynamics (MD) and dipole-driven molecular dynamics (µ-DMD) simulations of the hydrogen oxalate anion at the MP2/aug-cc-pVDZ level of theory. We examine the role of vibrational coupling between the OH stretching bands, that is, the fundamental and a few combination bands spanning the 2900-3100 cm-1 range, and several of the low-frequency bending and stretching fundamental modes. The low-frequency modes between 300 and 825 cm-1 play a crucial role in the proton-transfer motion. Strong involvement of CO2 and CCO bending and the CC stretching vibrations indicate that these large amplitude motions cause the shortening of the O···O distance and thus promote H+ transfer to the other oxygen by bringing it over the 3.4 kcal/mol barrier. Analysis of resonant µ-DMD trajectories shows that the complex spectral feature near 825 cm-1, closely corresponding to both an overtone of two quanta of 425 cm-1 and a combination band of low-frequency CO2 rocking (300 cm-1) and CCO bending (575 cm-1) modes, is involved in the proton transfer. µ-DMD shows that exciting the system at these mode combinations leads to faster barrier activation than exciting at the OH fundamental mode.

2.
Nat Commun ; 15(1): 5036, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866734

RESUMEN

A technique capable of label-free detection, mass spectrometry imaging (MSI) is a powerful tool for spatial investigation of native biomolecules in intact specimens. However, MSI has often been precluded from single-cell applications due to the spatial resolution limit set forth by the physical and instrumental constraints of the method. By taking advantage of the reversible interaction between the analytes and a superabsorbent hydrogel, we have developed a sample preparation and imaging workflow named Gel-Assisted Mass Spectrometry Imaging (GAMSI) to overcome the spatial resolution limits of modern mass spectrometers. With GAMSI, we show that the spatial resolution of MALDI-MSI can be enhanced ~3-6-fold to the sub-micrometer level without changing the existing mass spectrometry hardware or analysis pipeline. This approach will vastly enhance the accessibility of MSI-based spatial analysis at the cellular scale.


Asunto(s)
Hidrogeles , Lipidómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Lipidómica/métodos , Hidrogeles/química , Animales , Humanos , Ratones , Lípidos/química , Lípidos/análisis
3.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895471

RESUMEN

Niemann-Pick disease, type C1 (NPC1) is a rare, fatal neurodegenerative disorder caused by pathological variants in NPC1, which encodes a lysosomal cholesterol transport protein. There are no FDA approved treatments for this disorder. Both systemic and central nervous system delivery of AAV9-hNPC1 have shown significant disease amelioration in NPC1 murine models. To assess the impact of dose and window of therapeutic efficacy in Npc1 m1N mice, we systemically administered three different doses of AAV9-hNPC1 at 4 weeks old and the medium dose at pre-, early, and post-symptomatic timepoints. Higher vector doses and treatment earlier in life were associated with enhanced transduction in the nervous system and resulted in significantly increased lifespan. Similar beneficial effects were noted after gene therapy in Npc1 I1061T mice, a model that recapitulates a common human hypomorphic variant. Our findings help define dose ranges, treatment ages, and efficacy in severe and hypomorphic models of NPC1 deficiency and suggest that earlier delivery of AAV9-hNPC1 in a pre-symptomatic disease state is likely to yield optimal outcomes in individuals with NPC1.

4.
bioRxiv ; 2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37398444

RESUMEN

Compatible with label-free detection and quantification, mass spectrometry imaging (MSI) is a powerful tool for spatial investigation of biomolecules in intact specimens. Yet, the spatial resolution of MSI is limited by the method's physical and instrumental constraints, which often preclude it from single-cell and subcellular applications. By taking advantage of the reversible interaction of analytes with superabsorbent hydrogels, we developed a sample preparation and imaging workflow named Gel-Assisted Mass Spectrometry Imaging (GAMSI) to overcome these limits. With GAMSI, the spatial resolution of lipid and protein MALDI-MSI can be enhanced severalfold without changing the existing mass spectrometry hardware and analysis pipeline. This approach will further enhance the accessibility to (sub)cellular-scale MALDI-MSI-based spatial omics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA