Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Neuroendocrinol ; 66: 101006, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35640722

RESUMEN

The obligatory role of kisspeptin (KISS1) and its receptor (KISS1R) in regulating the hypothalamic-pituitary-gonadal axis, puberty and fertility was uncovered in 2003. In the few years that followed, an impressive body of work undertaken in many species established that neurons producing kisspeptin orchestrate gonadotropin-releasing hormone (GnRH) neuron activity and subsequent GnRH and gonadotropin hormone secretory patterns, through kisspeptin-KISS1R signaling, and mediate many aspects of gonadal steroid hormone feedback regulation of GnRH neurons. Here, we review knowledge accrued over the past decade, mainly in genetically modified mouse models, of the electrophysiological properties of kisspeptin neurons and their regulation by hormonal feedback. We also discuss recent progress in our understanding of the role of these cells within neuronal circuits that control GnRH neuron activity and GnRH secretion, energy balance and, potentially, other homeostatic and reproductive functions.


Asunto(s)
Kisspeptinas , Maduración Sexual , Animales , Electrofisiología , Hormona Liberadora de Gonadotropina , Ratones , Neuronas , Receptores de Kisspeptina-1
2.
J Physiol ; 600(7): 1753-1770, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35045190

RESUMEN

The hormone, oxytocin, is synthesised by magnocellular neurones of the supraoptic and paraventricular nuclei and is released from the posterior pituitary gland into the circulation to trigger uterine contractions during parturition. Kisspeptin fibre density increases around the supraoptic nucleus over pregnancy and intracerebroventricular kisspeptin excites oxytocin neurones only in late pregnancy. However, the mechanism of this excitation is unknown. Here, we found that microdialysis administration of kisspeptin into the supraoptic nucleus consistently increased the action potential (spike) firing rate of oxytocin neurones in urethane-anaesthetised late-pregnant rats (gestation day 18-21) but not in non-pregnant rats. Hazard analysis of action potential firing showed that kisspeptin specifically increased the probability of another action potential firing immediately after each action potential (post-spike excitability) in late-pregnant rats. Patch-clamp electrophysiology in hypothalamic slices showed that bath application of kisspeptin did not affect action potential frequency or baseline membrane potential in supraoptic nucleus neurones. Moreover, kisspeptin superfusion did not affect the frequency or amplitude of excitatory postsynaptic currents or inhibitory postsynaptic currents in supraoptic nucleus neurones. Taken together, these studies suggest that kisspeptin directly activates oxytocin neurones in late pregnancy, at least in part, via increased post-spike excitability. KEY POINTS: Oxytocin secretion is triggered by action potential firing in magnocellular neurones of the hypothalamic supraoptic and paraventricular nuclei to induce uterine contractions during birth. In late pregnancy, kisspeptin expression increases in rat periventricular nucleus neurones that project to the oxytocin system. Here, we show that intra-supraoptic nucleus administration of kisspeptin increases the action potential firing rate of oxytocin neurones in anaesthetised late-pregnant rats, and that the increased firing rate is associated with increased oxytocin neurone excitability immediately after each action potential. By contrast, kisspeptin superfusion of hypothalamic slices did not affect the activity of supraoptic nucleus neurones or the strength of local synaptic inputs to supraoptic nucleus neurones. Hence, kisspeptin might activate oxytocin neurons in late pregnancy by transiently increasing oxytocin neuron excitability after each action potential.


Asunto(s)
Kisspeptinas , Oxitocina , Potenciales de Acción/fisiología , Animales , Femenino , Kisspeptinas/metabolismo , Kisspeptinas/farmacología , Neuronas/fisiología , Oxitocina/metabolismo , Embarazo , Ratas , Núcleo Supraóptico/fisiología , Vasopresinas/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(47): E10216-E10223, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109258

RESUMEN

The pulsatile release of luteinizing hormone (LH) is critical for mammalian fertility. However, despite several decades of investigation, the identity of the neuronal network generating pulsatile reproductive hormone secretion remains unproven. We use here a variety of optogenetic approaches in freely behaving mice to evaluate the role of the arcuate nucleus kisspeptin (ARNKISS) neurons in LH pulse generation. Using GCaMP6 fiber photometry, we find that the ARNKISS neuron population exhibits brief (∼1 min) synchronized episodes of calcium activity occurring as frequently as every 9 min in gonadectomized mice. These ARNKISS population events were found to be near-perfectly correlated with pulsatile LH secretion. The selective optogenetic activation of ARNKISS neurons for 1 min generated pulses of LH in freely behaving mice, whereas inhibition with archaerhodopsin for 30 min suppressed LH pulsatility. Experiments aimed at resetting the activity of the ARNKISS neuron population with halorhodopsin were found to reset ongoing LH pulsatility. These observations indicate the ARNKISS neurons as the long-elusive hypothalamic pulse generator driving fertility.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Luteinizante/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Potenciales de Acción , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/diagnóstico por imagen , Femenino , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética/métodos , Periodicidad , Fotometría/métodos , Imagen de Colorante Sensible al Voltaje
4.
J Neurosci ; 38(28): 6310-6322, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29899026

RESUMEN

A population of kisspeptin-GABA coexpressing neurons located in the rostral periventricular area of the third ventricle (RP3V) is believed to activate gonadotropin-releasing hormone (GnRH) neurons to generate the luteinizing hormone (LH) surge triggering ovulation. Selective optogenetic activation of RP3V kisspeptin (RP3VKISS) neurons in female mice for >30 s and ≥10 Hz in either a continuous or bursting mode was found to reliably generate a delayed and long-lasting activation of GnRH neuron firing in brain slices. Optogenetic activation of RP3VKISS neurons in vivo at 10 Hz generated substantial increments in LH secretion of similar amplitude to the endogenous LH surge. Studies using GABAA receptor antagonists and optogenetic activation of RP3V GABA (RP3VGABA) neurons in vitro revealed that low-frequency (2 Hz) stimulation generated immediate and transient GABAA receptor-mediated increases in GnRH neuron firing, whereas higher frequencies (10 Hz) recruited the long-lasting activation observed following RP3VKISS neuron stimulation. In vivo, 2 Hz activation of RP3VGABA neurons did not alter LH secretion, whereas 10 Hz stimulation evoked a sustained large increase in LH identical to RP3VKISS neuron activation. Optogenetic activation of RP3VKISS neurons in which kisspeptin had been deleted did not alter LH secretion. These studies demonstrate the presence of parallel transmission streams from RP3V neurons to GnRH neurons that are frequency dependent and temporally distinct. This comprises a rapid and transient GABAA receptor-mediated activation and a slower onset kisspeptin-mediated stimulation of long duration. At the time of the LH surge, GABA release appears to be functionally redundant with the neuropeptide kisspeptin being the dominant cotransmitter influencing GnRH neuron output.SIGNIFICANCE STATEMENT Miscommunication between the brain and ovaries is thought to represent a major cause of infertility in humans. Studies in rodents suggest that a population of neurons located in the rostral periventricular area of the third ventricle (RP3V) are critical for activating the gonadotropin-releasing hormone (GnRH) neurons that trigger ovulation. The present study provides evidence that an RP3V neuron population coexpressing kisspeptin and GABA provides a functionally important excitatory input to GnRH neurons at the time of ovulation. This neural input releases GABA and/or kisspeptin in the classical frequency dependent and temporally distinct nature of amino acid-neuropeptide cotransmission. Unusually, however, the neuropeptide stream is found to be functionally dominant in activating GnRH neurons at the time of ovulation.


Asunto(s)
Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neuronas/fisiología , Ovulación/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Femenino , Hormona Luteinizante/metabolismo , Ratones , Tercer Ventrículo
5.
J Neurosci ; 35(17): 6881-92, 2015 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-25926463

RESUMEN

The cellular mechanisms governing the impact of the central circadian clock on neuronal networks are incompletely understood. We examine here the influence of the suprachiasmatic nucleus output neuropeptide arginine-vasopressin (AVP) on the activity of preoptic area kisspeptin neurons. These cells integrate circadian and hormonal signals within the neuronal network that regulates fertility in females. Electrophysiological recordings in brain slices from kisspeptin-GFP mice showed that AVP dose-dependently increased the firing rate of most kisspeptin neurons. These actions were mediated directly at the kisspeptin neuron. Experiments in mice expressing the calcium indicator GCaMP3 in kisspeptin neurons enabled simultaneous monitoring of intracellular calcium concentrations ([Ca(2+)]i) in multiple cells and revealed that AVP increased [Ca(2+)]i in >80% of diestrous kisspeptin neurons via a mechanism involving voltage-gated calcium channels. We next examined whether AVP signaling in kisspeptin neurons was time and ovarian cycle dependent. AVP exerted the same effects on diestrous and proestrous days of the ovarian cycle, whether hours before [zeitgeber time 4 (ZT4)-ZT6] or just before (ZT10) the expected time of the proestrous preovulatory luteinizing hormone surge. Remarkably, however, AVP signaling was critically dependent on circulating ovarian steroids as AVP no longer excited preoptic kisspeptin neurons in ovariectomized mice, an effect that was fully restored by estradiol treatment. Together, these studies show that AVP exerts a potent and direct stimulatory influence upon the electrical activity and [Ca(2+)]i of most preoptic kisspeptin neurons. Unexpectedly, estrogen is found to permit circadian AVP signaling at preoptic kisspeptin neurons rather than dynamically modulate its activity throughout the estrous cycle.


Asunto(s)
Arginina Vasopresina/farmacología , Estrógenos/farmacología , Kisspeptinas/metabolismo , Red Nerviosa/fisiología , Neuronas/efectos de los fármacos , Área Preóptica/citología , Transducción de Señal/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Arginina Vasopresina/metabolismo , Calcio/metabolismo , Ritmo Circadiano/efectos de los fármacos , Ritmo Circadiano/fisiología , Ciclo Estral/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Kisspeptinas/genética , Ratones , Ovariectomía , Bloqueadores de los Canales de Sodio/farmacología , Núcleo Supraquiasmático/citología , Tetrodotoxina/farmacología
6.
Front Neuroendocrinol ; 36: 15-27, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24907402

RESUMEN

Kisspeptin neurons are critical components of the neuronal network controlling the activity of the gonadotropin-releasing hormone (GnRH) neurons. A variety of genetically-manipulated mouse models have recently facilitated the study of the electrical activity of the two principal kisspeptin neuron populations located in the rostral periventricular area of the third ventricle (RP3V) and arcuate nucleus (ARN) in acute brain slices. We discuss here the mechanisms and pathways through which kisspeptin neurons regulate GnRH neuron activity. We then examine the different kisspeptin-green fluorescent protein mouse models being used for kisspeptin electrophysiology and the data obtained to date for RP3V and ARN kisspeptin neurons. In light of these new observations on the spontaneous firing rates, intrinsic membrane properties, and neurotransmitter regulation of kisspeptin neurons, we speculate on the physiological roles of the different kisspeptin populations.


Asunto(s)
Encéfalo/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Animales , Fertilidad/fisiología , Ratones
7.
J Neurosci ; 33(26): 10828-39, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23804103

RESUMEN

Circulating gonadal steroid hormones are thought to modulate a wide range of brain functions. However, the effects of steroid fluctuations through the ovarian cycle on the intrinsic properties of neurons are not well understood. We examined here whether gonadal steroids modulated the excitability of kisspeptin neurons located in the rostral periventricular region of the third ventricle (RP3V) of female mice. These cells are strongly implicated in sensing the high levels of circulating estradiol on proestrus to activate gonadotropin-releasing hormone (GnRH) neurons that, in turn, trigger ovulation. Electrophysiological studies were undertaken in brain slices from ovariectomized (OVX), diestrous, and proestrous kisspeptin-GFP mice. RP3V kisspeptin neurons exhibited marked changes in the hyperpolarization-evoked depolarizing sag and rebound firing across these groups. The hyperpolarization-activated current Ih was identified to be responsible for the depolarizing sag and was increased across OVX → diestrous → proestrous mice. Experiments in OVX mice given estradiol replacement identified an estradiol-dependent increase in Ih within RP3V kisspeptin neurons. Ih in these cells was found to contribute to their subthreshold membrane properties and the dynamics of rebound firing following hyperpolarizing stimuli in an estrous cycle-dependent manner. Only a minor role was found for Ih in modulating the spontaneous burst firing of RP3V kisspeptin neurons. These observations identify Ih as an ionic current that is regulated in a cyclical manner by circulating estradiol within the female brain, and suggest that such plasticity in the intrinsic properties of RP3V kisspeptin neurons may contribute to the generation of the preovulatory GnRH surge.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Estradiol/fisiología , Ciclo Estral/fisiología , Kisspeptinas/fisiología , Neuronas/fisiología , Canales de Potasio/fisiología , Área Preóptica/fisiología , Animales , Interpretación Estadística de Datos , Fenómenos Electrofisiológicos , Femenino , Hormona Liberadora de Gonadotropina/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ovariectomía , Técnicas de Placa-Clamp , Área Preóptica/citología
9.
Peptides ; 163: 170981, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36842628

RESUMEN

Fertility in mammals is ultimately controlled by a small population of neurons - the gonadotropin-releasing hormone (GnRH) neurons - located in the ventral forebrain. GnRH neurons control gonadal function through the release of GnRH, which in turn stimulates the secretion of the anterior pituitary gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH). In spontaneous ovulators, ovarian follicle maturation eventually stimulates, via sex steroid feedback, the mid-cycle surge in GnRH and LH secretion that causes ovulation. The GnRH/LH surge is initiated in many species just before the onset of activity through processes controlled by the central circadian clock, ensuring that the neuroendocrine control of ovulation and sex behavior are coordinated. This review aims to give an overview of anatomical and functional studies that collectively reveal some of the mechanisms through which the central circadian clock regulates GnRH neurons and their afferent circuits to drive the preovulatory surge.


Asunto(s)
Kisspeptinas , Hormona Luteinizante , Femenino , Animales , Kisspeptinas/genética , Hormona Liberadora de Gonadotropina , Gonadotropinas , Ovulación , Mamíferos
10.
Front Endocrinol (Lausanne) ; 14: 1212854, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900129

RESUMEN

Background: The neuroendocrine control of ovulation is orchestrated by neuronal circuits that ultimately drive the release of gonadotropin-releasing hormone (GnRH) from the hypothalamus to trigger the preovulatory surge in luteinizing hormone (LH) secretion. While estrogen feedback signals are determinant in triggering activation of GnRH neurons, through stimulation of afferent kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3VKISS1 neurons), many neuropeptidergic and classical neurotransmitter systems have been shown to regulate the LH surge. Among these, several lines of evidence indicate that the monoamine neurotransmitter serotonin (5-HT) has an excitatory, permissive, influence over the generation of the surge, via activation of type 2 5-HT (5-HT2) receptors. The mechanisms through which this occurs, however, are not well understood. We hypothesized that 5-HT exerts its influence on the surge by stimulating RP3VKISS1 neurons in a 5-HT2 receptor-dependent manner. Methods: We tested this using kisspeptin neuron-specific calcium imaging and electrophysiology in brain slices obtained from male and female mice. Results: We show that exogenous 5-HT reversibly increases the activity of the majority of RP3VKISS1 neurons. This effect is more prominent in females than in males, is likely mediated directly at RP3VKISS1 neurons and requires activation of 5-HT2 receptors. The functional impact of 5-HT on RP3VKISS1 neurons, however, does not significantly vary during the estrous cycle. Conclusion: Taken together, these data suggest that 5-HT2 receptor-mediated stimulation of RP3VKISS1 neuron activity might be involved in mediating the influence of 5-HT on the preovulatory LH surge.


Asunto(s)
Kisspeptinas , Área Preóptica , Ratones , Femenino , Masculino , Animales , Área Preóptica/metabolismo , Kisspeptinas/metabolismo , Serotonina/farmacología , Neuronas/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Receptores de Serotonina , Neurotransmisores
11.
J Neurosci ; 31(46): 16591-6, 2011 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-22090486

RESUMEN

The endocannabinoid (eCB) system and the cannabinoid CB1 receptor (CB1R) play key roles in the modulation of brain functions. Although actions of eCBs and CB1Rs are well described at the synaptic level, little is known of their modulation of neural activity at the network level. Using microelectrode arrays, we have examined the role of CB1R activation in the modulation of the electrical activity of rat and mice cortical neural networks in vitro. We find that exogenous activation of CB1Rs expressed on glutamatergic neurons decreases the spontaneous activity of cortical neural networks. Moreover, we observe that the net effect of the CB1R antagonist AM251 inversely correlates with the initial level of activity in the network: blocking CB1Rs increases network activity when basal network activity is low, whereas it depresses spontaneous activity when its initial level is high. Our results reveal a complex role of CB1Rs in shaping spontaneous network activity, and suggest that the outcome of endogenous neuromodulation on network function might be state dependent.


Asunto(s)
Encéfalo/citología , Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Red Nerviosa/fisiología , Neuronas/fisiología , 4-Aminopiridina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Animales Recién Nacidos , Benzotiadiazinas/farmacología , Moduladores de Receptores de Cannabinoides/agonistas , Moduladores de Receptores de Cannabinoides/antagonistas & inhibidores , Células Cultivadas , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA , Técnicas In Vitro , Ratones , Ratones Transgénicos , Red Nerviosa/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Neuronas/clasificación , Neuronas/efectos de los fármacos , Compuestos Organofosforados/farmacología , Picrotoxina/farmacología , Piperidinas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Pirazoles/farmacología , Quinoxalinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/deficiencia , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Valina/análogos & derivados , Valina/farmacología
12.
J Neuroendocrinol ; 34(5): e13073, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34939256

RESUMEN

For about two decades, recordings of identified gonadotropin-releasing hormone (GnRH) neurons have provided a wealth of information on their properties. We describe areas of consensus and debate the intrinsic electrophysiologic properties of these cells, their response to fast synaptic and neuromodulatory input, Ca2+ imaging correlates of action potential firing, and signaling pathways regulating these aspects. How steroid feedback and development change these properties, functions of GnRH neuron subcompartments and local networks, as revealed by chemo- and optogenetic approaches, are also considered.


Asunto(s)
Estradiol , Hormona Liberadora de Gonadotropina , Potenciales de Acción/fisiología , Estradiol/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neuronas/metabolismo , Transducción de Señal
13.
Front Endocrinol (Lausanne) ; 13: 951344, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992143

RESUMEN

Polycystic ovary syndrome (PCOS) is associated with elevated androgen and luteinizing hormone (LH) secretion and with oligo/anovulation. Evidence indicates that elevated androgens impair sex steroid hormone feedback regulation of pulsatile LH secretion. Hyperandrogenemia in PCOS may also disrupt the preovulatory LH surge. The mechanisms through which this might occur, however, are not fully understood. Kisspeptin (KISS1) neurons of the rostral periventricular area of the third ventricle (RP3V) convey hormonal cues to gonadotropin-releasing hormone (GnRH) neurons. In rodents, the preovulatory surge is triggered by these hormonal cues and coincident timing signals from the central circadian clock in the suprachiasmatic nucleus (SCN). Timing signals are relayed to GnRH neurons, in part, via projections from SCN arginine-vasopressin (AVP) neurons to RP3VKISS1 neurons. Because rodent SCN cells express androgen receptors (AR), we hypothesized that these circuits are impaired by elevated androgens in a mouse model of PCOS. In prenatally androgen-treated (PNA) female mice, SCN Ar expression was significantly increased compared to that found in prenatally vehicle-treated mice. A similar trend was seen in the number of Avp-positive SCN cells expressing Ar. In the RP3V, the number of kisspeptin neurons was preserved. Anterograde tract-tracing, however, revealed reduced SCNAVP neuron projections to the RP3V and a significantly lower proportion of RP3VKISS1 neurons with close appositions from SCNAVP fibers. Functional assessments showed, on the other hand, that RP3VKISS1 neuron responses to AVP were maintained in PNA mice. These findings indicate that PNA changes some of the neural circuits that regulate the preovulatory surge. These impairments might contribute to ovulatory dysfunction in PNA mice modeling PCOS.


Asunto(s)
Kisspeptinas , Síndrome del Ovario Poliquístico , Núcleo Supraquiasmático , Andrógenos/metabolismo , Andrógenos/farmacología , Animales , Arginina , Arginina Vasopresina/metabolismo , Femenino , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Ratones , Neuronas/metabolismo , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Embarazo , Núcleo Supraquiasmático/metabolismo , Vasopresinas/metabolismo
14.
Endocrinology ; 162(6)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33824970

RESUMEN

Coordination of ovulation and behavior is critical to reproductive success in many species. During the female estrous cycle, the preovulatory gonadotropin surge occurs when ovarian follicles reach maturity and, in rodents, it begins just before the daily onset of activity, ensuring that ovulation coincides with sex behavior. Timing of the surge relies on projections from the suprachiasmatic nucleus (SCN), the locus of the central circadian clock, to hypothalamic circuits that regulate gonadotropin secretion. The cellular mechanisms through which the SCN controls these circuits and gates the preovulatory surge to the appropriate estrous cycle stage, however, are poorly understood. We investigated in mice the functional impact of SCN arginine-vasopressin (AVP) neuron projections to kisspeptin (Kiss1) neurons in the rostral periventricular area of the third ventricle (RP3VKiss1), responsible for generating the preovulatory surge. Conditional anterograde tracing revealed that SCNAVP neurons innervate approximately half of the RP3VKiss1 neurons. Optogenetic activation of SCNAVP projections in brain slices caused an AVP-mediated stimulation of RP3VKiss1 action potential firing in proestrus, the cycle stage when the surge is generated. This effect was less prominent in diestrus, the preceding cycle stage, and absent in estrus, following ovulation. Remarkably, in estrus, activation of SCNAVP projections resulted in GABA-mediated inhibition of RP3VKiss1 neuron firing, an effect rarely encountered in other cycle stages. Together, these data reveal functional plasticity in SCNAVP neuron output that drives opposing effects on RP3VKiss1 neuron activity across the ovulatory cycle. This might contribute to gating activation of the preovulatory surge to the appropriate estrous cycle stage.


Asunto(s)
Relojes Circadianos/fisiología , Ciclo Estral/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Animales , Arginina Vasopresina/genética , Arginina Vasopresina/metabolismo , Mapeo Encefálico , Plasticidad de la Célula/fisiología , Ritmo Circadiano/fisiología , Femenino , Kisspeptinas/metabolismo , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Proestro/fisiología , Núcleo Supraquiasmático/metabolismo , Núcleo Supraquiasmático/fisiología
15.
J Neurosci ; 27(15): 4027-35, 2007 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-17428980

RESUMEN

Astrocytes respond to neuronal activity with [Ca2+]i increases after activation of specific receptors. Bergmann glial cells (BGs), astrocytes of the cerebellar molecular layer (ML), express various receptors that can mobilize internal Ca2+. BGs also express Ca2+ permeable AMPA receptors that may be important for maintaining the extensive coverage of Purkinje cell (PC) excitatory synapses by BG processes. Here, we examined Ca2+ signals in single BGs evoked by synaptic activity in cerebellar slices. Short bursts of high-frequency stimulation of the ML elicited Ca2+ transients composed of a small-amplitude fast rising phase, followed by a larger and slower rising phase. The first phase resulted from Ca2+ influx through AMPA receptors, whereas the second phase required release of Ca2+ from internal stores initiated by P2 purinergic receptor activation. We found that such Ca2+ responses could be evoked by direct activation of neurons releasing ATP onto BGs or after activation of metabotropic glutamate receptor 1 on these neurons. Moreover, examination of BG and PC responses to various synaptic stimulation protocols suggested that ML interneurons are likely the cellular source of ATP.


Asunto(s)
Señalización del Calcio/fisiología , Neuroglía/fisiología , Receptores de Glutamato/fisiología , Receptores Purinérgicos/fisiología , Animales , Cerebelo/citología , Cerebelo/fisiología , Neuroglía/citología , Ratas
16.
J Neurosci ; 27(6): 1325-33, 2007 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-17287507

RESUMEN

The probability of neurotransmitter release at the nerve terminal is an important determinant of synaptic efficacy. At some central synapses, the postsynaptic, or target, neuron determines neurotransmitter release probability (P(r)) at the presynaptic terminal. The mechanisms responsible for this target-cell dependent control of P(r) have not been elucidated. Using whole-cell patch-clamp recordings from magnocellular neurosecretory cells in the paraventricular and supraoptic nuclei of the hypothalamus, we demonstrate that inhibitory, GABA synapses specifically onto oxytocin (OT)-producing neurosecretory cells exhibit a low P(r) that is relatively uniform at multiple synapses onto the same cell. This low P(r) results from a two-step process that requires the tonic release of OT from the postsynaptic cell. The ambient extracellular levels of neuropeptide are sufficient to activate postsynaptic OT receptors and trigger the Ca2+-dependent production of endocannabinoids, which act in a retrograde manner at presynaptic cannabinoid CB1 receptors to decrease GABA release. The functional consequence of this tonic inhibition of GABA release is that all inhibitory inputs facilitate uniformly when activated at high rates of activity. This causes inhibition in the postsynaptic cell that is sufficiently powerful to disrupt firing. Blockade of CB1 receptors increases P(r) at these synapses, resulting in a rapid depression of IPSCs at high rates of activity, thereby eliminating the ability of afferent inputs to inhibit postsynaptic firing. By playing a deterministic role in GABA release at the afferent nerve terminal, the postsynaptic OT neuron effectively filters synaptic signals and thereby modulates its own activity patterns.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Oxitocina/metabolismo , Ácido gamma-Aminobutírico/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Benzoxazinas , Calcio/fisiología , Ácido Egtácico/farmacología , Líquido Extracelular/fisiología , Femenino , Hipotálamo Anterior/efectos de los fármacos , Hipotálamo Anterior/fisiología , Masculino , Morfolinas/farmacología , Naftalenos/farmacología , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/fisiología , Técnicas de Placa-Clamp , Piperidinas/farmacología , Terminales Presinápticos/fisiología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor Cannabinoide CB1/fisiología , Ácido gamma-Aminobutírico/metabolismo
17.
J Neuroendocrinol ; 30(12): e12660, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30422333

RESUMEN

A population of kisspeptin neurones located in the hypothalamic arcuate nucleus (ARN) very likely represent the gonadotrophin-releasing hormone pulse generator responsible for driving pulsatile luteinising hormone secretion in mammals. As such, it has become important to understand the neural inputs that modulate the activity of ARN kisspeptin (ARNKISS ) neurones. Using a transgenic GCaMP6 mouse model allowing the intracellular calcium levels ([Ca2+ ]i ) of individual ARNKISS neurones to be assessed simultaneously, we examined whether the circadian neuropeptides vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP) modulated the activity of ARNKISS neurones directly. To validate this methodology, we initially evaluated the effects of neurokinin B (NKB) on [Ca2+ ]i in kisspeptin neurones residing within the rostral, middle and caudal ARN subregions of adult male and female mice. All experiments were undertaken in the presence of tetrodotoxin and ionotropic amino acid antagonists. NKB was found to evoke an abrupt increase in [Ca2+ ]i in 95%-100% of kisspeptin neurones throughout the ARN of both sexes. By contrast, both VIP and AVP were found to primarily activate kisspeptin neurones located in the caudal ARN of female mice. Although 58% and 59% of caudal ARN kisspeptin neurones responded to AVP and VIP, respectively, in female mice, only 0%-8% of kisspeptin neurones located in other ARN subregions responded in females and 0%-12% of cells in any subregion in males (P < 0.05). These observations demonstrate unexpected sex differences and marked heterogeneity in functional neuropeptide receptor expression amongst ARNKISS neurones organised on a rostro-caudal basis. The functional significance of this unexpected influence of VIP and AVP on ARNKISS neurones remains to be established.


Asunto(s)
Núcleo Arqueado del Hipotálamo/citología , Kisspeptinas/metabolismo , Neuronas/metabolismo , Caracteres Sexuales , Péptido Intestinal Vasoactivo/fisiología , Vasopresinas/fisiología , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Calcio/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Neuroquinina B/farmacología , Neuronas/efectos de los fármacos , Péptido Intestinal Vasoactivo/farmacología , Vasopresinas/farmacología
18.
Endocrinology ; 159(11): 3822-3833, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30304401

RESUMEN

Developments in optical imaging and optogenetics are transforming the functional investigation of neuronal networks throughout the brain. Recent studies in the neuroendocrine field have used genetic mouse models combined with a variety of light-activated optical tools as well as GCaMP calcium imaging to interrogate the neural circuitry controlling hormone secretion. The present review highlights the benefits and caveats of these approaches for undertaking both acute brain slice and functional studies in vivo. We focus on the use of channelrhodopsin and the inhibitory optogenetic tools, archaerhodopsin and halorhodopsin, in addition to GCaMP imaging of individual cells in vitro and neural populations in vivo using fiber photometry. We also address issues around the use of genetic vs viral delivery of encoded proteins to specific Cre-expressing cell populations, their quantification, and the use of conscious vs anesthetized animal models. To date, optogenetics and GCaMP imaging have proven useful in dissecting functional circuitry within the brain and are likely to become essential investigative tools for deciphering the different neural networks controlling hormone secretion.


Asunto(s)
Encéfalo/metabolismo , Hormonas/metabolismo , Neuronas/metabolismo , Animales , Proteínas Arqueales , Encéfalo/diagnóstico por imagen , Channelrhodopsins , Dependovirus , Técnicas de Transferencia de Gen , Halorrodopsinas , Ratones , Modelos Animales , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/metabolismo , Imagen Óptica , Optogenética , Fotometría
19.
Nat Commun ; 9(1): 400, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29374161

RESUMEN

Sexual behavior is essential for the survival of many species. In female rodents, mate preference and copulatory behavior depend on pheromones and are synchronized with ovulation to ensure reproductive success. The neural circuits driving this orchestration in the brain have, however, remained elusive. Here, we demonstrate that neurons controlling ovulation in the mammalian brain are at the core of a branching neural circuit governing both mate preference and copulatory behavior. We show that male odors detected in the vomeronasal organ activate kisspeptin neurons in female mice. Classical kisspeptin/Kiss1R signaling subsequently triggers olfactory-driven mate preference. In contrast, copulatory behavior is elicited by kisspeptin neurons in a parallel circuit independent of Kiss1R involving nitric oxide signaling. Consistent with this, we find that kisspeptin neurons impinge onto nitric oxide-synthesizing neurons in the ventromedial hypothalamus. Our data establish kisspeptin neurons as a central regulatory hub orchestrating sexual behavior in the female mouse brain.


Asunto(s)
Kisspeptinas/metabolismo , Neuronas/fisiología , Conducta Sexual Animal/fisiología , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/genética , Masculino , Preferencia en el Apareamiento Animal , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Odorantes , Postura , Núcleo Hipotalámico Ventromedial/fisiología
20.
Novartis Found Symp ; 276: 238-48; discussion 248-52, 275-81, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16805434

RESUMEN

The supraoptic nucleus (SON) of the hypothalamus undergoes a striking anatomical remodelling under conditions of intense stimulations like chronic dehydration, parturition and lactation. This morphological plasticity modifies the astrocytic coverage of magnocellular neurons and their synaptic afferent inputs. These changes occur within a few hours and are completely reversible upon the cessation of the stimulation. By comparing synaptic transmission and diffusion properties before and during this neuroglial remodelling, we have been able to show that the astrocytic environment of neurons contributes to the regulation of synaptic and extrasynaptic transmission. It appears that the presence of fine astrocytic processes enveloping synapses and neuronal elements ensures two important functions. First, they control the level of activation of presynaptic metabotropic glutamate autoreceptors located on glutamatergic terminals, thereby regulating synaptic strength at excitatory synapses. Second, they constitute a physical barrier to diffusion, limiting spatially and temporally spill-over of neurotransmitters and, as a consequence, extrasynaptic transmission, a process essential for intercellular communication. Using the neuroglial anatomical remodelling of the SON as an experimental model has brought new insights into the role of glial cells in the regulation of synaptic transmission and signal processing in the brain.


Asunto(s)
Astrocitos/metabolismo , Neuronas/metabolismo , Núcleo Supraóptico , Transmisión Sináptica/fisiología , Adenosina Trifosfato/metabolismo , Animales , Astrocitos/citología , Deshidratación , Difusión , Espacio Extracelular/química , Femenino , Ácido Glutámico/metabolismo , Lactancia/fisiología , Neuronas/citología , Parto/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Núcleo Supraóptico/citología , Núcleo Supraóptico/fisiología , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA