Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38676118

RESUMEN

This research paper presents a case study on the application of Metal Oxide Semiconductor (MOX)-based VOC/TVOC sensors for indoor air quality (IAQ) monitoring. This study focuses on the ease of use and the practical benefits of these sensors, drawing insights from measurements conducted in a university laboratory setting. The investigation showcases the straightforward integration of MOX-based sensors into existing IAQ monitoring systems, highlighting their user-friendly features and the ability to provide precise and real-time information on volatile organic compound concentrations. Emphasizing ease of installation, minimal maintenance, and immediate data accessibility, this paper demonstrates the practicality of incorporating MOX-based sensors for efficient IAQ management. The findings contribute to the broader understanding of MOX sensor capabilities, providing valuable insights for those seeking straightforward and effective solutions for indoor air quality monitoring. This case study outlines the feasibility and benefits of utilizing MOX-based sensors in various environments, offering a promising avenue for the widespread adoption of user-friendly technologies in IAQ management.

2.
Sensors (Basel) ; 24(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38676280

RESUMEN

This paper presents an indoor air quality (IAQ) monitoring system designed for a better end-user experience. The monitoring system consists of elements, from the monitoring sensor to the monitoring interface, designed and implemented by the research team, especially for the proposed monitoring system. The monitoring solution is intended for users who live in houses without automatic ventilation systems. The air quality sensor is designed at a minimum cost and complexity to allow multi-zone implementation without significant effort. The user interface uses a spatial graphic representation that facilitates understanding areas with different air quality levels. Presentation of the outdoor air quality level supports the user's decision to ventilate a space. An innovative element of the proposed monitoring interface is the real-time forecast of air quality evolution in each monitored space. The paper describes the implementation of an original monitoring solution (monitoring device, Edge/Cloud management system, innovative user monitoring interface) and presents the results of testing this system in a relevant environment. The research conclusions show the proposed solution's benefits in improving the end-user experience, justified both by the technical results obtained and by the opinion of the users who tested the monitoring system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA