RESUMEN
Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.
Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Aberraciones Cromosómicas , Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Niño , Trastornos Generalizados del Desarrollo Infantil/diagnóstico , Rotura Cromosómica , Deleción Cromosómica , Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Sistema Nervioso/crecimiento & desarrollo , Esquizofrenia/genética , Análisis de Secuencia de ADN , Transducción de SeñalRESUMEN
Mitochondrial DNA copy number (mtDNA-CN) is a proxy for mitochondrial function and is associated with aging-related diseases. However, it is unclear how mtDNA-CN measured in blood can reflect diseases that primarily manifest in other tissues. Using the Genotype-Tissue Expression Project, we interrogated relationships between mtDNA-CN measured in whole blood and gene expression from whole blood and 47 additional tissues in 419 individuals. mtDNA-CN was significantly associated with expression of 700 genes in whole blood, including nuclear genes required for mtDNA replication. Significant enrichment was observed for splicing and ubiquitin-mediated proteolysis pathways, as well as target genes for the mitochondrial transcription factor NRF1. In nonblood tissues, there were more significantly associated genes than expected in 30 tissues, suggesting that global gene expression in those tissues is correlated with blood-derived mtDNA-CN. Neurodegenerative disease pathways were significantly associated in multiple tissues, and in an independent data set, the UK Biobank, we observed that higher mtDNA-CN was significantly associated with lower rates of both prevalent (OR = 0.89, CI = 0.83; 0.96) and incident neurodegenerative disease (HR = 0.95, 95% CI = 0.91;0.98). The observation that mtDNA-CN measured in blood is associated with gene expression in other tissues suggests that blood-derived mtDNA-CN can reflect metabolic health across multiple tissues. Identification of key pathways including splicing, RNA binding, and catalysis reinforces the importance of mitochondria in maintaining cellular homeostasis. Finally, validation of the role of mtDNA CN in neurodegenerative disease in a large independent cohort study solidifies the link between blood-derived mtDNA-CN, altered gene expression in multiple tissues, and aging-related disease.
Asunto(s)
Variaciones en el Número de Copia de ADN , ADN Mitocondrial/sangre , ADN Mitocondrial/genética , Expresión Génica , Enfermedades Neurodegenerativas/genética , Estudios de Cohortes , Femenino , Humanos , Masculino , Especificidad de Órganos/genéticaRESUMEN
In this exciting era of "next-gen cytogenetics," integrating genomic sequencing into the prenatal diagnostic setting is possible within an actionable time frame and can provide precise delineation of balanced chromosomal rearrangements at the nucleotide level. Given the increased risk of congenital abnormalities in newborns with de novo balanced chromosomal rearrangements, comprehensive interpretation of breakpoints could substantially improve prediction of phenotypic outcomes and support perinatal medical care. Herein, we present and evaluate sequencing results of balanced chromosomal rearrangements in ten prenatal subjects with respect to the location of regulatory chromatin domains (topologically associated domains [TADs]). The genomic material from all subjects was interpreted to be "normal" by microarray analyses, and their rearrangements would not have been detected by cell-free DNA (cfDNA) screening. The findings of our systematic approach correlate with phenotypes of both pregnancies with untoward outcomes (5/10) and with healthy newborns (3/10). Two pregnancies, one with a chromosomal aberration predicted to be of unknown clinical significance and another one predicted to be likely benign, were terminated prior to phenotype-genotype correlation (2/10). We demonstrate that the clinical interpretation of structural rearrangements should not be limited to interruption, deletion, or duplication of specific genes and should also incorporate regulatory domains of the human genome with critical ramifications for the control of gene expression. As detailed in this study, our molecular approach to both detecting and interpreting the breakpoints of structural rearrangements yields unparalleled information in comparison to other commonly used first-tier diagnostic methods, such as non-invasive cfDNA screening and microarray analysis, to provide improved genetic counseling for phenotypic outcome in the prenatal setting.
Asunto(s)
Aberraciones Cromosómicas , Anomalías Congénitas/genética , Reordenamiento Génico , Nucleótidos/genética , Diagnóstico Prenatal/métodos , Alelos , Mapeo Cromosómico , Anomalías Congénitas/diagnóstico , Femenino , Regulación de la Expresión Génica , Pruebas Genéticas , Genoma Humano , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Cariotipificación , Masculino , Embarazo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Análisis de Secuencia de ADN , Translocación GenéticaRESUMEN
CAPZB is an actin-capping protein that caps the growing end of F-actin and modulates the cytoskeleton and tethers actin filaments to the Z-line of the sarcomere in muscles. Whole-genome sequencing was performed on a subject with micrognathia, cleft palate and hypotonia that harbored a de novo, balanced chromosomal translocation that disrupts the CAPZB gene. The function of capzb was analyzed in the zebrafish model. capzb(-/-) mutants exhibit both craniofacial and muscle defects that recapitulate the phenotypes observed in the human subject. Loss of capzb affects cell morphology, differentiation and neural crest migration. Differentiation of both myogenic stem cells and neural crest cells requires capzb. During palate morphogenesis, defective cranial neural crest cell migration in capzb(-/-) mutants results in loss of the median cell population, creating a cleft phenotype. capzb is also required for trunk neural crest migration, as evident from melanophores disorganization in capzb(-/-) mutants. In addition, capzb over-expression results in embryonic lethality. Therefore, proper capzb dosage is important during embryogenesis, and regulates both cell behavior and tissue morphogenesis.
Asunto(s)
Proteína CapZ/genética , Diferenciación Celular , Cabeza/embriología , Morfogénesis , Cresta Neural/embriología , Animales , Fisura del Paladar/genética , Fisura del Paladar/metabolismo , Modelos Animales de Enfermedad , Femenino , Cabeza/fisiología , Humanos , Lactante , Micrognatismo/genética , Micrognatismo/metabolismo , Hipotonía Muscular/genética , Hipotonía Muscular/metabolismo , Mutación , Cresta Neural/metabolismo , Cresta Neural/fisiología , Análisis de Secuencia de ADN , Síndrome , Pez Cebra/embriología , Pez Cebra/metabolismo , Pez Cebra/fisiologíaRESUMEN
Copy-number variants (CNVs) have been the predominant focus of genetic studies of structural variation, and chromosomal microarray (CMA) for genome-wide CNV detection is the recommended first-tier genetic diagnostic screen in neurodevelopmental disorders. We compared CNVs observed by CMA to the structural variation detected by whole-genome large-insert sequencing in 259 individuals diagnosed with autism spectrum disorder (ASD) from the Simons Simplex Collection. These analyses revealed a diverse landscape of complex duplications in the human genome. One remarkably common class of complex rearrangement, which we term dupINVdup, involves two closely located duplications ("paired duplications") that flank the breakpoints of an inversion. This complex variant class is cryptic to CMA, but we observed it in 8.1% of all subjects. We also detected other paired-duplication signatures and duplication-mediated complex rearrangements in 15.8% of all ASD subjects. Breakpoint analysis showed that the predominant mechanism of formation of these complex duplication-associated variants was microhomology-mediated repair. On the basis of the striking prevalence of dupINVdups in this cohort, we explored the landscape of all inversion variation among the 235 highest-quality libraries and found abundant complexity among these variants: only 39.3% of inversions were canonical, or simple, inversions without additional rearrangement. Collectively, these findings indicate that dupINVdups, as well as other complex duplication-associated rearrangements, represent relatively common sources of genomic variation that is cryptic to population-based microarray and low-depth whole-genome sequencing. They also suggest that paired-duplication signatures detected by CMA warrant further scrutiny in genetic diagnostic testing given that they might mark complex rearrangements of potential clinical relevance.
Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/genética , Inversión Cromosómica/genética , Variaciones en el Número de Copia de ADN/genética , Marcadores Genéticos/genética , Duplicaciones Segmentarias en el Genoma/genética , Estudios de Cohortes , Reparación del ADN/genética , Biblioteca de Genes , HumanosRESUMEN
Structural variation (SV) is a significant component of the genetic etiology of both neurodevelopmental and psychiatric disorders; however, routine guidelines for clinical genetic screening have been established only in the former category. Genome-wide chromosomal microarray (CMA) can detect genomic imbalances such as copy-number variants (CNVs), but balanced chromosomal abnormalities (BCAs) still require karyotyping for clinical detection. Moreover, submicroscopic BCAs and subarray threshold CNVs are intractable, or cryptic, to both CMA and karyotyping. Here, we performed whole-genome sequencing using large-insert jumping libraries to delineate both cytogenetically visible and cryptic SVs in a single test among 30 clinically referred youth representing a range of severe neuropsychiatric conditions. We detected 96 SVs per person on average that passed filtering criteria above our highest-confidence resolution (6,305 bp) and an additional 111 SVs per genome below this resolution. These SVs rearranged 3.8 Mb of genomic sequence and resulted in 42 putative loss-of-function (LoF) or gain-of-function mutations per person. We estimate that 80% of the LoF variants were cryptic to clinical CMA. We found myriad complex and cryptic rearrangements, including a "paired" duplication (360 kb, 169 kb) that flanks a 5.25 Mb inversion that appears in 7 additional cases from clinical CNV data among 47,562 individuals. Following convergent genomic profiling of these independent clinical CNV data, we interpreted three SVs to be of potential clinical significance. These data indicate that sequence-based delineation of the full SV mutational spectrum warrants exploration in youth referred for neuropsychiatric evaluation and clinical diagnostic SV screening more broadly.
Asunto(s)
Edad de Inicio , Aberraciones Cromosómicas , Cromosomas Humanos/genética , Variaciones en el Número de Copia de ADN/genética , Trastornos Mentales/genética , Enfermedades Neurodegenerativas/genética , Hibridación Genómica Comparativa , Genoma Humano , Humanos , Trastornos Mentales/epidemiología , Análisis por Micromatrices , Enfermedades Neurodegenerativas/epidemiología , Fenotipo , Estados Unidos/epidemiologíaRESUMEN
Rare copy number variants (CNVs) disrupting ASTN2 or both ASTN2 and TRIM32 have been reported at 9q33.1 by genome-wide studies in a few individuals with neurodevelopmental disorders (NDDs). The vertebrate-specific astrotactins, ASTN2 and its paralog ASTN1, have key roles in glial-guided neuronal migration during brain development. To determine the prevalence of astrotactin mutations and delineate their associated phenotypic spectrum, we screened ASTN2/TRIM32 and ASTN1 (1q25.2) for exonic CNVs in clinical microarray data from 89 985 individuals across 10 sites, including 64 114 NDD subjects. In this clinical dataset, we identified 46 deletions and 12 duplications affecting ASTN2. Deletions of ASTN1 were much rarer. Deletions near the 3' terminus of ASTN2, which would disrupt all transcript isoforms (a subset of these deletions also included TRIM32), were significantly enriched in the NDD subjects (P = 0.002) compared with 44 085 population-based controls. Frequent phenotypes observed in individuals with such deletions include autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), speech delay, anxiety and obsessive compulsive disorder (OCD). The 3'-terminal ASTN2 deletions were significantly enriched compared with controls in males with NDDs, but not in females. Upon quantifying ASTN2 human brain RNA, we observed shorter isoforms expressed from an alternative transcription start site of recent evolutionary origin near the 3' end. Spatiotemporal expression profiling in the human brain revealed consistently high ASTN1 expression while ASTN2 expression peaked in the early embryonic neocortex and postnatal cerebellar cortex. Our findings shed new light on the role of the astrotactins in psychopathology and their interplay in human neurodevelopment.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Trastornos Generalizados del Desarrollo Infantil/genética , Glicoproteínas/genética , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Preescolar , Cromosomas Humanos Par 9 , Variaciones en el Número de Copia de ADN , Exones , Femenino , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Glicoproteínas/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Fenotipo , Polimorfismo de Nucleótido Simple , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Factores de Riesgo , Eliminación de Secuencia , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Adulto JovenRESUMEN
NRXN1 microdeletions occur at a relatively high frequency and confer increased risk for neurodevelopmental and neurobehavioral abnormalities. The mechanism that makes NRXN1 a deletion hotspot is unknown. Here, we identified deletions of the NRXN1 region in affected cohorts, confirming a strong association with the autism spectrum and other neurodevelopmental disorders. Interestingly, deletions in both affected and control individuals were clustered in the 5' portion of NRXN1 and its immediate upstream region. To explore the mechanism of deletion, we mapped and analyzed the breakpoints of 32 deletions. At the deletion breakpoints, frequent microhomology (68.8%, 2-19 bp) suggested predominant mechanisms of DNA replication error and/or microhomology-mediated end-joining. Long terminal repeat (LTR) elements, unique non-B-DNA structures, and MEME-defined sequence motifs were significantly enriched, but Alu and LINE sequences were not. Importantly, small-size inverted repeats (minus self chains, minus sequence motifs, and partial complementary sequences) were significantly overrepresented in the vicinity of NRXN1 region deletion breakpoints, suggesting that, although they are not interrupted by the deletion process, such inverted repeats can predispose a region to genomic instability by mediating single-strand DNA looping via the annealing of partially reverse complementary strands and the promoting of DNA replication fork stalling and DNA replication error. Our observations highlight the potential importance of inverted repeats of variable sizes in generating a rearrangement hotspot in which individual breakpoints are not recurrent. Mechanisms that involve short inverted repeats in initiating deletion may also apply to other deletion hotspots in the human genome.
Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Variaciones en el Número de Copia de ADN , Secuencias Invertidas Repetidas , Trastornos Mentales/genética , Proteínas del Tejido Nervioso/genética , Eliminación de Secuencia , Proteínas de Unión al Calcio , Estudios de Cohortes , Replicación del ADN/genética , ADN Forma B/genética , ADN de Cadena Simple/genética , Exones , Predisposición Genética a la Enfermedad , Inestabilidad Genómica , Humanos , Moléculas de Adhesión de Célula Nerviosa , Secuencias Repetidas TerminalesRESUMEN
Conventional cytogenetic testing offers low-resolution detection of balanced karyotypic abnormalities but cannot provide the precise, gene-level knowledge required to predict outcomes. The use of high-resolution whole-genome deep sequencing is currently impractical for the purpose of routine clinical care. We show here that whole-genome "jumping libraries" can offer an immediately applicable, nucleotide-level complement to conventional genetic diagnostics within a time frame that allows for clinical action. We performed large-insert sequencing of DNA extracted from amniotic-fluid cells with a balanced de novo translocation. The amniotic-fluid sample was from a patient in the third trimester of pregnancy who underwent amniocentesis because of severe polyhydramnios after multiple fetal anomalies had been detected on ultrasonography. Using a 13-day sequence and analysis pipeline, we discovered direct disruption of CHD7, a causal locus in the CHARGE syndrome (coloboma of the eye, heart anomaly, atresia of the choanae, retardation, and genital and ear anomalies). Clinical findings at birth were consistent with the CHARGE syndrome, a diagnosis that could not have been reliably inferred from the cytogenetic breakpoint. This case study illustrates the potential power of customized whole-genome jumping libraries when used to augment prenatal karyotyping.
Asunto(s)
Síndrome CHARGE/genética , Trastornos de los Cromosomas/diagnóstico , Pruebas Genéticas/métodos , Biblioteca Genómica , Cardiopatías Congénitas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Diagnóstico Prenatal/métodos , Adulto , Síndrome CHARGE/diagnóstico , Aberraciones Cromosómicas , Femenino , Enfermedades Fetales/diagnóstico , Genoma Humano , Cardiopatías Congénitas/diagnóstico por imagen , Humanos , Cariotipo , Mutación , Embarazo , Translocación Genética , Ultrasonografía PrenatalRESUMEN
Inter-individual variation in the number of copies of the mitochondrial genome, called mitochondrial DNA copy number (mtDNA-CN), reflects mitochondrial function and has been associated with various aging-related diseases. We examined 415,422 exomes of self-reported White ancestry individuals from the UK Biobank and tested the impact of rare variants, at the level of single variants and through aggregate variant-set tests, on mtDNA-CN. A survey across nine variant sets tested enrichment of putatively causal variants and identified 14 genes at experiment-wide significance and three genes at marginal significance. These included associations at known mtDNA depletion syndrome genes (mtDNA helicase TWNK, p = 1.1 × 10-30; mitochondrial transcription factor TFAM, p = 4.3 × 10-15; mtDNA maintenance exonuclease MGME1, p = 2.0 × 10-6) and the V617F dominant gain-of-function mutation in the tyrosine kinase JAK2 (p = 2.7 × 10-17), associated with myeloproliferative disease. Novel genes included the ATP-dependent protease CLPX (p = 8.4 × 10-9), involved in mitochondrial proteome quality, and the mitochondrial adenylate kinase AK2 (p = 4.7 × 10-8), involved in hematopoiesis. The most significant association was a missense variant in SAMHD1 (p = 4.2 × 10-28), found on a rare, 1.2-Mb shared ancestral haplotype on chromosome 20. SAMHD1 encodes a cytoplasmic host restriction factor involved in viral defense response and the mitochondrial nucleotide salvage pathway, and is associated with Aicardi-Goutières syndrome 5, a childhood encephalopathy and chronic inflammatory response disorder. Rare variants were enriched in Mendelian mtDNA depletion syndrome loci, and these variants implicated core processes in mtDNA replication, nucleoid structure formation, and maintenance. These data indicate that strong-effect mutations from the nuclear genome contribute to the genetic architecture of mtDNA-CN.
Asunto(s)
Variaciones en el Número de Copia de ADN , ADN Mitocondrial , Humanos , Niño , ADN Mitocondrial/genética , Proteína 1 que Contiene Dominios SAM y HD/genética , Variaciones en el Número de Copia de ADN/genética , Secuenciación del Exoma , Mitocondrias/genética , Exoma/genética , Síndrome , Exodesoxirribonucleasas/genéticaRESUMEN
Mitochondria carry their own circular genome and disruption of the mitochondrial genome is associated with various aging-related diseases. Unlike the nuclear genome, mitochondrial DNA (mtDNA) can be present at 1000 s to 10,000 s copies in somatic cells and variants may exist in a state of heteroplasmy, where only a fraction of the DNA molecules harbors a particular variant. We quantify mtDNA heteroplasmy in 194,871 participants in the UK Biobank and find that heteroplasmy is associated with a 1.5-fold increased risk of all-cause mortality. Additionally, we functionally characterize mtDNA single nucleotide variants (SNVs) using a constraint-based score, mitochondrial local constraint score sum (MSS) and find it associated with all-cause mortality, and with the prevalence and incidence of cancer and cancer-related mortality, particularly leukemia. These results indicate that mitochondria may have a functional role in certain cancers, and mitochondrial heteroplasmic SNVs may serve as a prognostic marker for cancer, especially for leukemia.
Asunto(s)
Leucemia , Mitocondrias , Humanos , Mitocondrias/genética , ADN Mitocondrial/genética , Heteroplasmia , Leucemia/genética , MutaciónRESUMEN
A challenge of next generation sequencing is read contamination. We use Genotype-Tissue Expression (GTEx) datasets and technical metadata along with RNA-seq datasets from other studies to understand factors that contribute to contamination. Here we report, of 48 analyzed tissues in GTEx, 26 have variant co-expression clusters of four highly expressed and pancreas-enriched genes (PRSS1, PNLIP, CLPS, and/or CELA3A). Fourteen additional highly expressed genes from other tissues also indicate contamination. Sample contamination is strongly associated with a sample being sequenced on the same day as a tissue that natively expresses those genes. Discrepant SNPs across four contaminating genes validate the contamination. Low-level contamination affects ~40% of samples and leads to numerous eQTL assignments in inappropriate tissues among these 18 genes. This type of contamination occurs widely, impacting bulk and single cell (scRNA-seq) data set analysis. In conclusion, highly expressed, tissue-enriched genes basally contaminate GTEx and other datasets impacting analyses.
Asunto(s)
Contaminación de ADN , ARN/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ARN , Análisis de la Célula IndividualRESUMEN
Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology.
Asunto(s)
Aberraciones Cromosómicas , Anomalías Congénitas/genética , Reordenamiento Génico , Marcadores Genéticos/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Femenino , Humanos , MasculinoRESUMEN
Analysis of chromosomal rearrangements has been highly successful in identifying genes involved in many congenital abnormalities including hearing loss. Herein, we report a subject, designated DGAP242, with congenital hearing loss (HL) and a de novo balanced translocation 46,XX,t(1;5)(q32;q15)dn. Using multiple next-generation sequencing techniques, we obtained high resolution of the breakpoints. This revealed disruption of the orphan receptor ESRRG on chromosome 1, which is differentially expressed in inner ear hair cells and has previously been implicated in HL, and disruption of KIAA0825 on chromosome 5. Given the translocation breakpoints and supporting literature, disruption of ESRRG is the most likely cause for DGAP242's phenotype and implicates ESRRG in a monogenic form of congenital HL, although a putative contributory role for KIAA0825 in the subject's disorder cannot be excluded.
Asunto(s)
Discapacidades del Desarrollo/genética , Pérdida Auditiva/genética , Fenotipo , Receptores de Estrógenos/genética , Adulto , Línea Celular Tumoral , Puntos de Rotura del Cromosoma , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 5/genética , Discapacidades del Desarrollo/diagnóstico , Femenino , Pérdida Auditiva/diagnóstico , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Linaje , Síndrome , Translocación GenéticaRESUMEN
Genomic rearrangements are a common cause of human congenital abnormalities. However, their origin and consequences are poorly understood. We performed molecular analysis of two patients with congenital disease who carried de novo genomic rearrangements. We found that the rearrangements in both patients hit genes that are recurrently rearranged in cancer (ETV1, FOXP1, and microRNA cluster C19MC) and drive formation of fusion genes similar to those described in cancer. Subsequent analysis of a large set of 552 de novo germline genomic rearrangements underlying congenital disorders revealed enrichment for genes rearranged in cancer and overlap with somatic cancer breakpoints. Breakpoints of common (inherited) germline structural variations also overlap with cancer breakpoints but are depleted for cancer genes. We propose that the same genomic positions are prone to genomic rearrangements in germline and soma but that timing and context of breakage determines whether developmental defects or cancer are promoted.
Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos/genética , Anomalías Congénitas/genética , Reordenamiento Génico , Genoma Humano , Mutación de Línea Germinal , Animales , Puntos de Rotura del Cromosoma , Proteínas de Unión al ADN/genética , Factores de Transcripción Forkhead/genética , Células HEK293 , Humanos , MicroARNs/genética , Proteínas Represoras/genética , Factores de Transcripción/genética , Pez CebraRESUMEN
CONTEXT Brain-derived neurotrophic factor (BDNF) is suspected of being a causative factor in psychiatric disorders based on case reports or studies involving large structural anomalies. OBJECTIVE To determine the involvement of BDNF in human psychopathology. DESIGN Case-control study. SETTING Microarray-based comparative genomic hybridization data from 7 molecular diagnostic centers including 38 550 affected subjects and 28 705 unaffected subjects. PATIENTS Subjects referred to diagnostic screening centers for microarray-based comparative genomic hybridization for physical or cognitive impairment. MAIN OUTCOME MEASURES Genomic copy number gains and losses. RESULTS We report 5 individuals with psychopathology and genomic deletion of a critical region including BDNF. The defined critical region was never disrupted in control subjects or diagnostic cases without developmental abnormalities. CONCLUSION Hemizygosity of the BDNF region contributes to variable psychiatric phenotypes including anxiety, behavioral, and mood disorders.