Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Transl Med ; 20(1): 620, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36572880

RESUMEN

Glioblastoma is the most lethal form of brain tumor with a recurrence rate of almost 90% and a survival time of only 15 months post-diagnosis. It is a highly heterogeneous, aggressive, and extensively studied tumor. Multiple studies have proposed therapeutic approaches to mitigate or improve the survival for patients with glioblastoma. In this article, we review the loss of the 5'-methylthioadenosine phosphorylase (MTAP) gene as a potential therapeutic approach for treating glioblastoma. MTAP encodes a metabolic enzyme required for the metabolism of polyamines and purines leading to DNA synthesis. Multiple studies have explored the loss of this gene and have shown its relevance as a therapeutic approach to glioblastoma tumor mitigation; however, other studies show that the loss of MTAP does not have a major impact on the course of the disease. This article reviews the contrasting findings of MTAP loss with regard to mitigating the effects of glioblastoma, and also focuses on multiple aspects of MTAP loss in glioblastoma by providing insights into the known findings and some of the unexplored areas of this field where new approaches can be imagined for novel glioblastoma therapeutics.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Purina-Nucleósido Fosforilasa/genética , Purina-Nucleósido Fosforilasa/metabolismo
2.
Sensors (Basel) ; 22(3)2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35161502

RESUMEN

Wearable devices use sensors to evaluate physiological parameters, such as the heart rate, pulse rate, number of steps taken, body fat and diet. The continuous monitoring of physiological parameters offers a potential solution to assess personal healthcare. Identifying outliers or anomalies in heart rates and other features can help identify patterns that can play a significant role in understanding the underlying cause of disease states. Since anomalies are present within the vast amount of data generated by wearable device sensors, identifying anomalies requires accurate automated techniques. Given the clinical significance of anomalies and their impact on diagnosis and treatment, a wide range of detection methods have been proposed to detect anomalies. Much of what is reported herein is based on previously published literature. Clinical studies employing wearable devices are also increasing. In this article, we review the nature of the wearables-associated data and the downstream processing methods for detecting anomalies. In addition, we also review supervised and un-supervised techniques as well as semi-supervised methods that overcome the challenges of missing and un-annotated healthcare data.


Asunto(s)
Análisis de Datos , Dispositivos Electrónicos Vestibles , Algoritmos , Frecuencia Cardíaca
3.
J Transl Med ; 13: 269, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26283544

RESUMEN

BACKGROUND: The STAT3 transcription factor is a major intracellular signaling protein and is frequently dysregulated in the most common and lethal brain malignancy in adults, glioblastoma multiforme (GBM). Activation of STAT3 in GBM correlates with malignancy and poor prognosis. The phosphorylating signal transducer JAK2 activates STAT3 in response to cytokines and growth factors. Currently there are no JAK-STAT pathway inhibitors in clinical trials for GBM, so we sought to examine the anti-GBM activity of SAR317461 (Sanofi-Aventis), a newer generation, highly potent JAK2 inhibitor that exhibits low toxicity and good pharmacokinetics. SAR317461 was initially approved for patient testing in the treatment of primary myelofibrosis (PMF), and has shown activity in preclinical models of melanoma and pulmonary cancer, but has not been tested in GBM. METHODS: We hypothesized that a potent small molecule JAK2 inhibitor could overcome the heterogeneous nature of GBM, and suppress a range of patient derived GBM tumorsphere lines and immortalized GBM cell lines. We treated with SAR317461 to determine IC50 values, and using Western blot analysis we asked whether the response was linked to STAT3 expression. Western blot analysis, FACS, and cell viability studies were used to identify the mechanism of SAR317461 induced cell death. RESULTS: We report for the first time that the JAK2 inhibitor SAR317461 clearly inhibited STAT3 phosphorylation and had substantial activity against cells (IC50 1-10 µM) from 6 of 7 different patient GSC derived GBM tumorsphere lines and three immortalized GBM lines. One patient GSC derived line did not constitutively express STAT3 and was more resistant to SAR317461 (IC50 ≈25 µM). In terms of mechanism we found cleaved PARP and clear apoptosis following SAR317461. SAR317461 also induced autophagy and the addition of an autophagy inhibitor markedly enhanced cell killing by SAR317461. CONCLUSIONS: We conclude that SAR317461 potently inhibits STAT3 phosphorylation and that it has significant activity against those GBM cells which express activated STAT3. Further studies are warranted in terms of the potential of SAR317461 as single and combined therapy for selectively treating human patients afflicted with GBMs expressing activation of the JAK2-STAT3 signaling axis.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Inhibidores Enzimáticos/química , Glioblastoma/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Mielofibrosis Primaria/metabolismo , Pirimidinas/química , Factor de Transcripción STAT3/antagonistas & inhibidores , Sulfonamidas/química , Adolescente , Adulto , Anciano , Autofagia , Neoplasias Encefálicas/patología , Línea Celular Tumoral/efectos de los fármacos , Separación Celular , Supervivencia Celular , Regulación hacia Abajo , Femenino , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/patología , Humanos , Concentración 50 Inhibidora , Masculino , Persona de Mediana Edad , Fosforilación , Modelos de Riesgos Proporcionales , Adulto Joven
4.
J Transl Med ; 12: 13, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24433351

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a therapeutic challenge, associated with high mortality. More effective GBM therapeutic options are urgently needed. Hence, we screened a large multi-class drug panel comprising the NIH clinical collection (NCC) that includes 446 FDA-approved drugs, with the goal of identifying new GBM therapeutics for rapid entry into clinical trials for GBM. METHODS: Screens using human GBM cell lines revealed 22 drugs with potent anti-GBM activity, including serotonergic blockers, cholesterol-lowering agents (statins), antineoplastics, anti-infective, anti-inflammatories, and hormonal modulators. We tested the 8 most potent drugs using patient-derived GBM cancer stem cell-like lines. Notably, the statins were active in vitro; they inhibited GBM cell proliferation and induced cellular autophagy. Moreover, the statins enhanced, by 40-70 fold, the pro-apoptotic activity of irinotecan, a topoisomerase 1 inhibitor currently used to treat a variety of cancers including GBM. Our data suggest that the mechanism of action of statins was prevention of multi-drug resistance protein MDR-1 glycosylation. This drug combination was synergistic in inhibiting tumor growth in vivo. Compared to animals treated with high dose irinotecan, the drug combination showed significantly less toxicity. RESULTS: Our data identifies a novel combination from among FDA-approved drugs. In addition, this combination is safer and well tolerated compared to single agent irinotecan. CONCLUSIONS: Our study newly identifies several FDA-approved compounds that may potentially be useful in GBM treatment. Our findings provide the basis for the rational combination of statins and topoisomerase inhibitors in GBM.


Asunto(s)
Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Aprobación de Drogas , Glioblastoma/tratamiento farmacológico , United States Food and Drug Administration , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Autofagia/efectos de los fármacos , Barrera Hematoencefálica/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Camptotecina/administración & dosificación , Camptotecina/análogos & derivados , Camptotecina/farmacología , Camptotecina/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia sin Enfermedad , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/patología , Humanos , Irinotecán , Ratones , Ratones Desnudos , Células Madre Neoplásicas/patología , Quinolinas/administración & dosificación , Quinolinas/farmacología , Quinolinas/uso terapéutico , Esferoides Celulares/patología , Estados Unidos , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Transl Med ; 12: 128, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24884660

RESUMEN

BACKGROUND: Glioblastoma (GBM) is an aggressive disease associated with poor survival. It is essential to account for the complexity of GBM biology to improve diagnostic and therapeutic strategies. This complexity is best represented by the increasing amounts of profiling ("omics") data available due to advances in biotechnology. The challenge of integrating these vast genomic and proteomic data can be addressed by a comprehensive systems modeling approach. METHODS: Here, we present an in silico model, where we simulate GBM tumor cells using genomic profiling data. We use this in silico tumor model to predict responses of cancer cells to targeted drugs. Initially, we probed the results from a recent hypothesis-independent, empirical study by Garnett and co-workers that analyzed the sensitivity of hundreds of profiled cancer cell lines to 130 different anticancer agents. We then used the tumor model to predict sensitivity of patient-derived GBM cell lines to different targeted therapeutic agents. RESULTS: Among the drug-mutation associations reported in the Garnett study, our in silico model accurately predicted ~85% of the associations. While testing the model in a prospective manner using simulations of patient-derived GBM cell lines, we compared our simulation predictions with experimental data using the same cells in vitro. This analysis yielded a ~75% agreement of in silico drug sensitivity with in vitro experimental findings. CONCLUSIONS: These results demonstrate a strong predictability of our simulation approach using the in silico tumor model presented here. Our ultimate goal is to use this model to stratify patients for clinical trials. By accurately predicting responses of cancer cells to targeted agents a priori, this in silico tumor model provides an innovative approach to personalizing therapy and promises to improve clinical management of cancer.


Asunto(s)
Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Simulación por Computador , Humanos , Estudios Retrospectivos
6.
Cancer Cell Int ; 14(1): 26, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24645697

RESUMEN

BACKGROUND: Primary and secondary brain cancers are highly treatment resistant, and their marked angiogenesis attracts interest as a potential therapeutic target. Recent observations reveal that the microvascular endothelium of primary high-grade gliomas expresses prostate specific membrane antigen (PSMA). Breast cancers express PSMA and they frequently form secondary brain tumors. Hence we report here our pilot study addressing the feasibility of PSMA targeting in brain and metastatic breast tumors, by examining PSMA levels in all glioma grades (19 patients) and in breast cancer brain metastases (5 patients). METHODS: Tumor specimens were acquired from archival material and normal brain tissues from autopsies. Tissue were stained and probed for PSMA, and the expression levels imaged and quantified using automated hardware and software. PSMA staining intensities of glioma subtypes, breast tumors, and breast tumor brain metastases were compared statistically versus normals. RESULTS: Normal brain microvessels (4 autopsies) did not stain for PSMA, while a small proportion (<5%) of healthy neurons stained, and were surrounded by an intact blood brain barrier. Tumor microvessels of the highly angiogenic grade IV gliomas showed intense PSMA staining which varied between patients and was significantly higher (p < 0.05) than normal brain. Grade I gliomas showed moderate vessel staining, while grade II and III gliomas had no vessel staining, but a few (<2%) of the tumor cells stained. Both primary breast cancer tissues and the associated brain metastases exhibited vascular PSMA staining, although the intensity of staining was generally less for the metastatic lesions. CONCLUSIONS: Our results align with and extend previous data showing PSMA expression in blood vessels of gliomas and breast cancer brain metastases. These results provide a rationale for more comprehensive studies to explore PSMA targeted agents for treating secondary brain tumors with PSMA expressing vasculature. Moreover, given that PSMA participates in angiogenesis, cell signaling, tumor survival, and invasion, characterizing its expression may help guide later investigations of the poorly understood process of low grade glioma progression to glioblastoma.

7.
J Neurooncol ; 119(2): 361-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24942463

RESUMEN

Leptomeningeal metastasis (LM) from solid tumors is typically a late manifestation of systemic cancer with limited survival. Randomized trials comparing single agent intrathecal methotrexate to liposomal cytarabine have shown similar efficacy and tolerability. We hypothesized that combination intrathecal chemotherapy would be a safe and tolerable option in solid tumor LM. We conducted a retrospective cohort study of combination IT chemotherapy in solid tumor LM at a single institution between April 2010 and July 2012. In addition to therapies directed at active systemic disease, each subject received IT liposomal cytarabine plus IT methotrexate with dexamethasone premedication. Patient characteristics, survival outcomes and toxicities were determined by systematic chart review. Thirty subjects were treated during the study period. The most common cancer types were breast 15 (50 %), glioblastoma 6 (20 %), and lung 5 (17 %). Cytologic clearance was achieved in 6 (33 %). Median non-glioblastoma overall survival was 30.2 weeks (n = 18; range 3.9-73.4), and did not differ significantly by tumor type. Median time to neurologic progression was 7 weeks (n = 8; range 0.9-57), with 10 subjects (56 %) experiencing death from systemic disease without progression of LM. Age less than 60 was associated with longer overall survival (p = 0.01). Six (21 %) experienced grade III toxicities during treatment, most commonly meningitis 2 (7 %). Combination IT chemotherapy was feasible in this small retrospective cohort. Prospective evaluation is necessary to determine tolerability, the impact on quality of life and neurocognitive outcomes or any survival benefit when compared to single agent IT chemotherapy.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Citarabina/administración & dosificación , Carcinomatosis Meníngea/tratamiento farmacológico , Carcinomatosis Meníngea/secundario , Metotrexato/administración & dosificación , Adulto , Factores de Edad , Anciano , Antimetabolitos Antineoplásicos/efectos adversos , Neoplasias de la Mama/patología , Citarabina/efectos adversos , Supervivencia sin Enfermedad , Estudios de Factibilidad , Humanos , Inyecciones Espinales , Estimación de Kaplan-Meier , Estado de Ejecución de Karnofsky , Liposomas , Neoplasias Pulmonares/patología , Carcinomatosis Meníngea/diagnóstico , Metotrexato/efectos adversos , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento
8.
Artículo en Inglés | MEDLINE | ID: mdl-38413483

RESUMEN

BACKGROUND: Following catheter ablation, vascular access management involves potential complications and prolonged recovery. Recently, suture-mediated closure (SMC) devices were approved for venous access procedures. The objective of this study is to evaluate the safety of a commercially available SMC for multiple access site venous closure by duplex ultrasound (DUS) in asymptomatic subjects with non-visible complications. METHODS: Thirty-six subjects (63 ± 10.7 years old, 12 female) were enrolled. Following catheter ablation for atrial fibrillation, all subjects had SMC of every venous access site. Subjects underwent DUS of femoral veins and arteries. DUS was performed at discharge, and again at 30 days. Subjects were evaluated for clinically apparent vascular complications. RESULTS: Mean procedure duration was 138.6 min, and the time to hemostasis was 3.1 min/access site and 9.5 min/subject. Median time to ambulation was 193.5 min, and median time to discharge was 5.95 h, with discharge as early as 2.4 h. A median of 2 sheaths/vein and a median of 2 SMC devices/vein were used. There were no major complications and a 16.7% (6/36) minor complication rate at discharge. All complications resolved at 30 days. The complication rate was not higher in patients with 2 SMC per access site as compared to the patients who just received 1 SMC per access site. CONCLUSIONS: This study demonstrates the safety of multi-access closure using SMC, following catheter ablation procedures, for closure of sites that use sheath sizes from ≤ 8F to ≥ 15F and for those that use 2 or more SMCs per access site.

9.
Future Sci OA ; 9(6): FSO864, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37228857

RESUMEN

Traumatic brain injury (TBI) is a significant cause of mortality and morbidity worldwide resulting from falls, car accidents, sports, and blast injuries. TBI is characterized by severe, life-threatening consequences due to neuroinflammation in the brain. Contact and collision sports lead to higher disability and death rates among young adults. Unfortunately, no therapy or drug protocol currently addresses the complex pathophysiology of TBI, leading to the long-term chronic neuroinflammatory assaults. However, the immune response plays a crucial role in tissue-level injury repair. This review aims to provide a better understanding of TBI's immunobiology and management protocols from an immunopathological perspective. It further elaborates on the risk factors, disease outcomes, and preclinical studies to design precisely targeted interventions for enhancing TBI outcomes.


Traumatic brain injury (TBI) is a leading cause of death and disability worldwide due to falls, car accidents, sports and blast injuries. TBI causes severe, life-threatening consequences due to inflammation in the brain. Unfortunately, no current therapy or drug protocol can address the complexity of TBI, leading to long-term chronic inflammation. However, the immune response plays a crucial role in repairing injured brain tissue. This review aims to provide a better understanding of TBI's immunobiology and management protocols to design targeted interventions for better outcomes in TBI patients.

10.
Future Sci OA ; 9(4): FSO851, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37090492

RESUMEN

The cerebrospinal fluid (CSF) is a clear ultrafiltrate of blood that envelopes and protects the central nervous system while regulating neuronal function through the maintenance of interstitial fluid homeostasis in the brain. Due to its anatomic location and physiological functions, the CSF can provide a reliable source of biomarkers for the diagnosis and treatment monitoring of different neurological diseases, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and primary and secondary brain malignancies. The incorporation of CSF biomarkers into the drug discovery and development can improve the efficiency of drug development and increase the chances of success. This review aims to consolidate the current use of CSF biomarkers in clinical practice and explore future perspectives for the field.


Cerebrospinal fluid (CSF) is a clear fluid that protects our brain and spinal cord, and can help diagnose and monitor neurological diseases like Alzheimer's and Parkinson's. Biomarkers in CSF are like clues that help doctors and researchers better understand these diseases. By using CSF biomarkers, doctors can diagnose and monitor patients more accurately, while researchers can develop more effective treatments. This review looks at how we use CSF biomarkers in medicine and how they might help us in the future. Better understanding of CSF biomarkers can improve the lives of people living with neurological diseases.

11.
World J Stem Cells ; 12(10): 1067-1079, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33178392

RESUMEN

Coronavirus disease 2019 (COVID-19), a pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), is growing at an exponential rate worldwide. Manifestations of this disease are heterogeneous; however, advanced cases often exhibit various acute respiratory distress syndrome-like symptoms, systemic inflammatory reactions, coagulopathy, and organ involvements. A common theme in advanced COVID-19 is unrestrained immune activation, classically referred to as a "cytokine storm", as well as deficiencies in immune regulatory mechanisms such as T regulatory cells. While mesenchymal stem cells (MSCs) themselves are objects of cytokine regulation, they can secrete cytokines to modulate immune cells by inducing anti-inflammatory regulatory Treg cells, macrophages and neutrophils; and by reducing the activation of T and B cells, dendritic and nature killer cells. Consequently, they have therapeutic potential for treating severe cases of COVID-19. Here we discuss the unique ability of MSCs, to act as a "living anti-inflammatory", which can "rebalance" the cytokine/immune responses to restore equilibrium. We also discuss current MSC trials and present different concepts for optimization of MSC therapy in patients with COVID-19 acute respiratory distress syndrome.

12.
CNS Oncol ; 8(2): CNS34, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30855176

RESUMEN

Aim: Genomically matched trials in primary brain tumors (PBTs) require recent tumor sequencing. We evaluated whether circulating tumor DNA (ctDNA) could facilitate genomic interrogation in these patients. Methods: Data from 419 PBT patients tested clinically with a ctDNA NGS panel at a CLIA-certified laboratory were analyzed. Results: A total of 211 patients (50%) had ≥1 somatic alteration detected. Detection was highest in meningioma (59%) and gliobastoma (55%). Single nucleotide variants were detected in 61 genes, with amplifications detected in ERBB2, MET, EGFR and others. Conclusion: Contrary to previous studies with very low yields, we found half of PBT patients had detectable ctDNA with genomically targetable off-label or clinical trial options for almost 50%. For those PBT patients with detectable ctDNA, plasma cfDNA genomic analysis is a clinically viable option for identifying genomically driven therapy options.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , ADN Tumoral Circulante/genética , Glioblastoma/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/sangre , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patología , Niño , Preescolar , ADN Tumoral Circulante/sangre , Femenino , Glioblastoma/sangre , Glioblastoma/diagnóstico , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Mutación , Pronóstico , Análisis de Secuencia de ADN , Adulto Joven
13.
Hum Antibodies ; 26(2): 95-101, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29036806

RESUMEN

Immunotherapy is now at the forefront of cancer therapeutic development. Gliomas are a particularly aggressive form of brain cancer for which immunotherapy may hold promise. Pritumumab (also known in the literature as CLNH11, CLN-IgG, and ACA-11) was the first monoclonal antibody tested in cancer patients. Pritumumab is a natural human monoclonal antibody developed from a B lymphocyte isolated from a regional draining lymph node of a patient with cervical carcinoma. The antibody binds ecto-domain vimentin on the surface of cancer cells. Pritumumab was originally tested in clinical trials with brain cancer patients in Japan where it demonstrated therapeutic benefit. It was reported to be a safe and effective therapy for brain cancer patients at doses 5-10 fold less than currently approved antibodies. Phase I dose escalation clinical trials are now being planned with pritumumab for the near future. Here we review data on the development and characterization of pritumumab, and review clinical trails data assessing immunotherapeutic effects of pritumumab for glioma patients.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Antineoplásicos Inmunológicos/aislamiento & purificación , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Inmunoglobulina G/aislamiento & purificación , Vimentina/inmunología , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/uso terapéutico , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Antineoplásicos Inmunológicos/metabolismo , Antineoplásicos Inmunológicos/uso terapéutico , Linfocitos B/química , Linfocitos B/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/mortalidad , Ensayos Clínicos como Asunto , Expresión Génica , Glioma/genética , Glioma/inmunología , Glioma/mortalidad , Humanos , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/uso terapéutico , Inmunoterapia/métodos , Ratones , Análisis de Supervivencia , Vimentina/antagonistas & inhibidores , Vimentina/genética , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Colloids Surf B Biointerfaces ; 161: 200-209, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29080504

RESUMEN

Circulating tumor cells (CTCs) are extremely rare cells found in blood of metastatic cancer patients. There is a need for inexpensive technologies for fast enrichment of CTCs from large blood volumes. Previous data showed that antibody-conjugated lipid shell immuno-microbubbles (MBs) bind and isolate cells from biological fluids by flotation. Here, blood-stable MBs targeted to several surface markers for isolation of breast tumor cells were developed. MBs coated with anti-human EpCAM antibodies showed efficient binding of EpCAM+ breast cancer cell lines SKBR-3, MCF-7, and MDA-MB-453, whereas anti-human EGFR MBs showed binding of EpCAMLOW/NEGATIVE cell lines MDA-MB-231 and BT-549. Multitargeted anti-human EpCAM/EGFR MBs bound all cell lines with over 95% efficiency. Highly concentrated MB-bound tumor cells were collected in a microliter volume via an inverted vacuum-assisted harvesting setup. Using anti-EpCAM and/or anti-EpCAM/EGFR MBs, an efficient (70-90%) recovery and fast (30min) isolation of the above-mentioned cells and cell clusters was achieved from 7.5mL of spiked human blood. Using anti-EpCAM MBs and anti-EpCAM/EGFR MBs, cytokeratin-positive, CD45-negative CTCs were detected in 62.5% (10/16) of patients with metastatic breast cancer and CTC clusters were detected in 41.7% (5/12) of CTC-positive samples. Moreover, in some samples MBs isolated cytokeratin positive, CD45 negative tumor-derived microparticles. None of these structures were detected in blood from non-epithelial malignancies. The fast and inexpensive multitargeted platform for batch isolation of CTCs can promote research and clinical applications involving primary tumors and metastases.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/sangre , Separación Celular/métodos , Microburbujas , Células Neoplásicas Circulantes/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Molécula de Adhesión Celular Epitelial/metabolismo , Femenino , Humanos , Queratinas/metabolismo , Células MCF-7 , Células Neoplásicas Circulantes/patología
15.
Oncotarget ; 8(14): 22370-22384, 2017 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26517684

RESUMEN

Transcription factors (TFs) are a major class of protein signaling molecules that play key cellular roles in cancers such as the highly lethal brain cancer-glioblastoma (GBM). However, the development of specific TF inhibitors has proved difficult owing to expansive protein-protein interfaces and the absence of hydrophobic pockets. We uniquely defined the dimerization surface as an expansive parental pharmacophore comprised of several regional daughter pharmacophores. We targeted the OLIG2 TF which is essential for GBM survival and growth, we hypothesized that small molecules able to fit each subpharmacophore would inhibit OLIG2 activation. The most active compound was OLIG2 selective, it entered the brain, and it exhibited potent anti-GBM activity in cell-based assays and in pre-clinical mouse orthotopic models. These data suggest that (1) our multiple pharmacophore approach warrants further investigation, and (2) our most potent compounds merit detailed pharmacodynamic, biophysical, and mechanistic characterization for potential preclinical development as GBM therapeutics.


Asunto(s)
Antineoplásicos/uso terapéutico , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Neoplasias Encefálicas/tratamiento farmacológico , Diseño de Fármacos , Glioblastoma/tratamiento farmacológico , Guanidinas/uso terapéutico , Terapia Molecular Dirigida , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Procesos de Crecimiento Celular , Supervivencia Celular/genética , Simulación por Computador , Humanos , Ratones , Ratones Desnudos , Estructura Molecular , Proteínas del Tejido Nervioso/química , Factor de Transcripción 2 de los Oligodendrocitos , Unión Proteica , Conformación Proteica , Bibliotecas de Moléculas Pequeñas , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Clin Cancer Res ; 23(16): 4716-4723, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28420725

RESUMEN

Purpose: Noninvasive drug biomarkers for the early assessment of tumor response can enable adaptive therapeutic decision-making and proof-of-concept studies for investigational drugs. Circulating tumor DNA (ctDNA) is released into the circulation by tumor cell turnover and has been shown to be detectable in urine.Experimental Design: We tested the hypothesis that dynamic changes in EGFR activating (exon 19del and L858R) and resistance (T790M) mutation levels detected in urine could inform tumor response within days of therapy for advanced non-small cell lung cancer (NSCLC) patients receiving osimertinib, a second-line third-generation anti-EGFR tyrosine kinase inhibitor.Results: Eight of nine evaluable NSCLC patients had detectable T790M-mutant DNA fragments in pretreatment baseline samples. Daily monitoring of mutations in urine indicated a pattern of intermittent spikes throughout week 1, suggesting apoptosis with an overall decrease in fragment numbers from baselines to day 7 preceding radiographic response assessed at 6 to 12 weeks.Conclusions: These findings suggest drug-induced tumor apoptosis within days of initial dosing. Daily sampling of ctDNA may enable early assessment of patient response and proof-of-concept studies for drug development. The modeling of tumor lysis through the day-to-day kinetics of ctDNA released into the blood and then into the urine is demonstrated in this proof-of-concept study in lung cancer patients receiving anti-EGFR tyrosine kinase inhibitors. This strategy may determine the specific clonal populations of cells which undergo apoptosis within the first week of therapy. This has important implications for developing combinational strategies to address inter- and intralesional heterogeneity and characterizing residual disease after initial drug exposure. Clin Cancer Res; 23(16); 4716-23. ©2017 AACR.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , ADN Tumoral Circulante/orina , ADN de Neoplasias/orina , Neoplasias Pulmonares/tratamiento farmacológico , Piperazinas/uso terapéutico , Acrilamidas , Anciano , Compuestos de Anilina , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/orina , ADN Tumoral Circulante/genética , ADN de Neoplasias/genética , Monitoreo de Drogas , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Exones/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/orina , Persona de Mediana Edad , Terapia Molecular Dirigida , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Factores de Tiempo , Resultado del Tratamiento
17.
Clin Cancer Res ; 23(14): 3657-3666, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28096270

RESUMEN

Purpose: Tumor-derived cell-free DNA (cfDNA) from urine of patients with cancer offers noninvasive biological material for detection of cancer-related molecular abnormalities such as mutations in Exon 2 of KRASExperimental Design: A quantitative, mutation-enrichment next-generation sequencing test for detecting KRASG12/G13 mutations in urine cfDNA was developed, and results were compared with clinical testing of archival tumor tissue and plasma cfDNA from patients with advanced cancer.Results: With 90 to 110 mL of urine, the KRASG12/G13 cfDNA test had an analytical sensitivity of 0.002% to 0.006% mutant copies in wild-type background. In 71 patients, the concordance between urine cfDNA and tumor was 73% (sensitivity, 63%; specificity, 96%) for all patients and 89% (sensitivity, 80%; specificity, 100%) for patients with urine samples of 90 to 110 mL. Patients had significantly fewer KRASG12/G13 copies in urine cfDNA during systemic therapy than at baseline or disease progression (P = 0.002). Compared with no changes or increases in urine cfDNA KRASG12/G13 copies during therapy, decreases in these measures were associated with longer median time to treatment failure (P = 0.03).Conclusions: A quantitative, mutation-enrichment next-generation sequencing test for detecting KRASG12/G13 mutations in urine cfDNA had good concordance with testing of archival tumor tissue. Changes in mutated urine cfDNA were associated with time to treatment failure. Clin Cancer Res; 23(14); 3657-66. ©2017 AACR.


Asunto(s)
Biomarcadores de Tumor/orina , Ácidos Nucleicos Libres de Células/orina , Neoplasias/genética , Proteínas Proto-Oncogénicas p21(ras)/orina , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Neoplasias/patología , Neoplasias/orina , Proteínas Proto-Oncogénicas p21(ras)/genética
18.
J Neurosci ; 25(49): 11322-9, 2005 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-16339027

RESUMEN

Transient receptor potential melastatin 8 (TRPM8) and transient receptor potential vanilloid 1 (TRPV1) are ion channels that detect cold and hot sensations, respectively. Their activation depolarizes the peripheral nerve terminals resulting in action potentials that propagate to brain via the spinal cord. These receptors also play a significant role in synaptic transmission between dorsal root ganglion (DRG) and dorsal horn (DH) neurons. Here, we show that TRPM8 is functionally downregulated by activation of protein kinase C (PKC) resulting in inhibition of membrane currents and increases in intracellular Ca2+ compared with upregulation of TRPV1 in cloned and native receptors. Bradykinin significantly downregulates TRPM8 via activation of PKC in DRG neurons. Activation of TRPM8 or TRPV1 at first sensory synapse between DRG and DH neurons leads to a robust increase in frequency of spontaneous/miniature EPSCs. PKC activation blunts TRPM8- and facilitates TRPV1-mediated synaptic transmission. Significantly, downregulation is attributable to PKC-mediated dephosphorylation of TRPM8 that could be reversed by phosphatase inhibitors. These findings suggest that inflammatory thermal hyperalgesia mediated by TRPV1 may be further aggravated by downregulation of TRPM8, because the latter could mediate the much needed cool/soothing sensation.


Asunto(s)
Regulación hacia Abajo/fisiología , Proteína Quinasa C/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Femenino , Mentol/farmacología , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPM/agonistas , Xenopus laevis
19.
Sci Rep ; 6: 39479, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27995987

RESUMEN

Sunlight has important biological effects in human skin. Ultraviolet (UV) light striking the epidermis catalyzes the synthesis of Vitamin D and triggers melanin production. Although a causative element in skin cancers, sunlight is also associated with positive health outcomes including reduced incidences of autoimmune diseases and cancers. The mechanisms, however, by which light affects immune function remain unclear. Here we describe direct photon sensing in human and mouse T lymphocytes, a cell-type highly abundant in skin. Blue light irradiation at low doses (<300 mJ cm-2) triggers synthesis of hydrogen peroxide (H2O2) in T cells revealed by the genetically encoded reporter HyPerRed. In turn, H2O2 activates a Src kinase/phospholipase C-γ1 (PLC-γ1) signaling pathway and Ca2+ mobilization. Pharmacologic inhibition or genetic disruption of Lck kinase, PLC-γ1 or the T cell receptor complex inhibits light-evoked Ca2+ transients. Notably, both light and H2O2 enhance T-cell motility in a Lck-dependent manner. Thus, T lymphocytes possess intrinsic photosensitivity and this property may enhance their motility in skin.


Asunto(s)
Movimiento Celular/efectos de la radiación , Piel/efectos de la radiación , Linfocitos T/citología , Linfocitos T/efectos de la radiación , Animales , Calcio/química , Proliferación Celular , Quimiotaxis , Humanos , Peróxido de Hidrógeno , Células Jurkat , Ratones , Fosfolipasa C gamma/metabolismo , Fosforilación , Fotones , Interferencia de ARN , Transducción de Señal/efectos de los fármacos , Bazo/citología , Luz Solar , Rayos Ultravioleta
20.
Oncotarget ; 7(36): 57932-57942, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27462771

RESUMEN

Zoledronic acid, a potent nitrogen-containing bisphosphonate (NBP), has been extensively used to limit bone turnover in a various diseases including tumors. Recent clinical studies have demonstrated direct anti-cancer effects of zoledronic acid, in addition to its clinical benefits for skeletal-related events. Here we investigated the effects of 4 clinically available NBPs on human tumor cell proliferation. Our data demonstrate a potent anti-proliferative effect of zoledronic acid against glioblastoma (GBM) cell lines, breast cancer cells and GBM patient-derived lines. Zoledronic acid also effectively inhibited GBM tumor growth in xenograft mouse models. Zoledronic acid strongly stimulated autophagy but not apoptotic signals in all tested cells. Only one intermediate product of cholesterols synthesis pathway, geranylgeranyl diphosphate (GGPP) rescued cells from the cytotoxic effects of zoledronic acid. To further investigate the effect of GGPP, we knocked down RABGGTA, which encodes a subunit of the Rabgeranylgeranyltransferase protein. This knockdown induced an effect similar to zoledronic acid in cancer cell lines. These data are promising and suggested a potential for zoledronic acid as an anti-cancer agent, through its ablation of the function of Rab proteins.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Difosfonatos/farmacología , Nitrógeno/química , Animales , Antineoplásicos/química , Autofagia , Conservadores de la Densidad Ósea/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Difosfonatos/química , Ensayos de Selección de Medicamentos Antitumorales , Glioblastoma/tratamiento farmacológico , Humanos , Imidazoles/química , Células MCF-7 , Ratones , Trasplante de Neoplasias , Ácido Zoledrónico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA