RESUMEN
This study was aimed at investigating the phytochemical profile and bioactivity of Diplotaxis harra subsp. crassifolia (Brassicaceae), a species from central-southern Sicily (Italy), where it is consumed as a salad. For this purpose, LC-ESI/HRMSn analysis of the ethanolic extract was performed, highlighting the occurrence, along with flavonoids, hydroxycinnamic acid derivatives, and oxylipins, of sulfated secondary metabolites, including glucosinolates and various sulfooxy derivatives (e.g., C13 nor-isoprenoids, hydroxyphenyl, and hydroxybenzoic acid derivatives), most of which were never reported before in the Brassicaeae family or in the Diplotaxis genus. Following ethnomedicinal information regarding this species used for the treatment of various pathologies such as diabetes and hypercholesterolemia, D. harra ethanolic extract was evaluated for its antioxidant potential using different in vitro tests such as 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), Ferric Reducing Ability Power, and ß-carotene bleaching tests. The inhibitory activity of carbohydrate-hydrolyzing enzymes (α-amylase and α-glucosidase) and pancreatic lipase was also assessed. In the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid assay, an IC50 value comparable to the positive control ascorbic acid (2.87 vs. 1.70 µg/mL, respectively) was obtained. The wild-wall rocket salad extract showed a significant α-amylase inhibitory effect. Obtained results indicate that Sicilian wild-wall rocket contains phytochemicals that can prevent hyperglycemia, hyperlipidemia, and obesity.
Asunto(s)
Antioxidantes , Fitoquímicos , Extractos Vegetales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Fitoquímicos/química , Fitoquímicos/farmacología , Sicilia , Flavonoides/química , Flavonoides/farmacología , Flavonoides/análisisRESUMEN
This work aimed to evaluate the impact of enrichment processing on the quality parameters, bioactivity and sensorial aspects of Myristica fragrans (mace)-flavored olive oil storage for one year. The mace powder was added to extra virgin olive oil through two different processes: immediately after crushing the olives by mixing mace (1% weight/weight (w/w)) with the olive paste (MAVOO-M) and by adding mace to extra virgin olive oil (C) (2% w/w) (MAVOO-I). A multi-analytical approach was applied to measure the main qualitative indexes, such as the free acidity, peroxide value and ultraviolet parameters. The total phenolic and carotenoid contents (TPC and TCC, respectively) and α-tocopherol were also evaluated, as well as the sensory attributes. The radical scavenging potential was estimated by using two different in vitro tests, namely, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). A significant increase in the free acidity parameter was found in all the flavored oils, and particularly in the MAVOO-M (1.27% oleic acid); at the same time, this oil was the sample with the lowest peroxide value (i.e., 9.68 meqO2/kg) after 360 days of storage. At the end of the storage, an increase in L* values was found in both the MAVOO-M and -I vs. the C (43.88 and 43.02, respectively, vs. 42.62). The TCC was strongly influenced by the addition of mace, especially when the infusion process was used. In fact, after one year of storage, the TCC in the MAVOO-I resulted in ~34.7% more than the MAVOO-M. A promising DPPH radical scavenging activity was observed independently by the applied aromatization process, with IC50 values of 19.77 and 17.80 µg/mL for the MAVOO-M and MAVOO-I, respectively. However, this activity decreased during storage, and a similar trend was observed using the ABTS test. In conclusion the infusion as enrichment methodology led to more promising results in terms of functionality compared with the co-mixing one.