Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139015

RESUMEN

Shortly after the beginning of the SARS-CoV-2 pandemic, many countries implemented sewage sentinel systems to monitor the circulation of the virus in the population. A fundamental part of these surveillance programs is the variant tracking through sequencing approaches to monitor and identify new variants or mutations that may be of importance. Two of the main sequencing platforms are Illumina and Oxford Nanopore Technologies. Here, we compare the performance of MiSeq (Illumina) and MinION (Oxford Nanopore Technologies), as well as two different data processing pipelines, to determine the effect they may have on the results. MiSeq showed higher sequencing coverage, lower error rate, and better capacity to detect and accurately estimate variant abundances than MinION R9.4.1 flow cell data. The use of different variant callers (LoFreq and iVar) and approaches to calculate the variant proportions had a remarkable impact on the results generated from wastewater samples. Freyja, coupled with iVar, may be more sensitive and accurate than LoFreq, especially with MinION data, but it comes at the cost of having a higher error rate. The analysis of MinION R10.4.1 flow cell data using Freyja combined with iVar narrows the gap with MiSeq performance in terms of read quality, accuracy, sensitivity, and number of detected mutations. Although MiSeq should still be considered as the standard method for SARS-CoV-2 variant tracking, MinION's versatility and rapid turnaround time may represent a clear advantage during the ongoing pandemic.


Asunto(s)
COVID-19 , Nanoporos , Humanos , SARS-CoV-2/genética , Aguas Residuales , COVID-19/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
2.
Environ Res ; 208: 112720, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35074352

RESUMEN

Wastewater based epidemiology (WBE) offers an overview of the SARS-CoV-2 variants circulating among the population thereby serving as a proper surveillance method. The variant of concern (VOC) Alpha was first identified in September 2020 in the United Kingdom, and rapidly became dominant across Europe. Our objective was to elucidate the Alpha VOC outcompetition rate and identify mutations in the spike glycoprotein (S) gene, indicative of the circulation of the Alpha VOC and/or other variants in the population through wastewater analysis. In the period covered by this study (November 2020-April 2021), forteen wastewater treatment plants (WWTPs) were weekly sampled. The total number of SARS-CoV-2 genome copies per L (GC/L) was determined with a Real-Time qPCR, targeting the N gene. Surveillance of the Alpha VOC circulation was ascertained using a duplex RT-qPCR, targeting and discriminating the S gene. Our results showed that in a period of 6 weeks the Alpha VOC was present in all the studied WWTPs, and became dominant in 11 weeks on average. The outcompetition rates of the Alpha VOC were estimated, and their relationship with different parameters statistically analyzed. The rapid spread of the Alpha VOC was influenced by its initial input and by the previous circulation of SARS-COV-2 in the population. This latter point could be explained by its higher transmissibility, particularly advantadgeous when a certain degree of herd immunity exists. Moreover, the presence of signature mutations of SARS-COV-2 variants were established by deep-sequencing of the complete S gene. The circulation of the Alpha VOC in the area under study was confirmed, and additionally two combinations of mutations in the S glycoprotein (T73A and D253N, and S477N and A522S) that could affect antibody binding were identified.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , SARS-CoV-2/genética , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
3.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33483313

RESUMEN

Two large wastewater treatment plants (WWTP), covering around 2.7 million inhabitants, which represents around 85% of the metropolitan area of Barcelona, were sampled before, during, and after the implementation of a complete lockdown. Five one-step reverse transcriptase quantitative PCR (RT-qPCR) assays, targeting the polymerase (IP2 and IP4), the envelope (E), and the nucleoprotein (N1 and N2) genome regions, were employed for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA detection in 24-h composite wastewater samples concentrated by polyethylene glycol (PEG) precipitation. SARS-CoV-2 was detected in a sewage sample collected 41 days ahead of the declaration of the first COVID-19 case. The evolution of SARS-CoV-2 genome copies in wastewater evidenced the validity of water-based epidemiology (WBE) to anticipate COVID-19 outbreaks, to evaluate the impact of control measures, and even to estimate the burden of shedders, including presymptomatic, asymptomatic, symptomatic, and undiagnosed cases. For the latter objective, a model was applied for the estimation of the total number of shedders, evidencing a high proportion of asymptomatic infected individuals. In this way, an infection prevalence of 2.0 to 6.5% was figured. On the other hand, proportions of around 0.12% and 0.09% of the total population were determined to be required for positive detection in the two WWTPs. At the end of the lockdown, SARS-CoV-2 RNA apparently disappeared in the WWTPs but could still be detected in grab samples from four urban sewers. Sewer monitoring allowed for location of specific hot spots of COVID-19, enabling the rapid adoption of appropriate mitigation measures.IMPORTANCE Water-based epidemiology (WBE) is a valuable early warning tool for tracking the circulation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among the population, including not only symptomatic patients but also asymptomatic, presymptomatic, and misdiagnosed carriers, which represent a high proportion of the infected population. In the specific case of Barcelona, wastewater surveillance anticipated by several weeks not only the original COVID-19 pandemic wave but also the onset of the second wave. In addition, SARS-CoV-2 occurrence in wastewater evidenced the efficacy of the adopted lockdown measures on the circulation of the virus. Health authorities profited from WBE to complement other inputs and adopt rapid and adequate measures to mitigate the effects of the pandemic. For example, sentinel surveillance of specific sewers helped to locate COVID-19 hot spots and to conduct massive numbers of RT-PCR tests among the population.


Asunto(s)
COVID-19/virología , Evolución Molecular , SARS-CoV-2/genética , Vigilancia de Guardia , Aguas Residuales/virología , Infecciones Asintomáticas/epidemiología , COVID-19/epidemiología , Ciudades , Genoma Viral , Humanos , Prevalencia , España/epidemiología , Esparcimiento de Virus , Instalaciones de Eliminación de Residuos
4.
Environ Sci Technol ; 55(17): 11756-11766, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34397216

RESUMEN

Since its first identification in the United Kingdom in late 2020, the highly transmissible B.1.1.7 variant of SARS-CoV-2 has become dominant in several countries raising great concern. We developed a duplex real-time RT-qPCR assay to detect, discriminate, and quantitate SARS-CoV-2 variants containing one of its mutation signatures, the ΔHV69/70 deletion, and used it to trace the community circulation of the B.1.1.7 variant in Spain through the Spanish National SARS-CoV-2 Wastewater Surveillance System (VATar COVID-19). The B.1.1.7 variant was detected earlier than clinical epidemiological reporting by the local authorities, first in the southern city of Málaga (Andalucía) in week 20_52 (year_week), and multiple introductions during Christmas holidays were inferred in different parts of the country. Wastewater-based B.1.1.7 tracking showed a good correlation with clinical data and provided information at the local level. Data from wastewater treatment plants, which reached B.1.1.7 prevalences higher than 90% for ≥2 consecutive weeks showed that 8.1 ± 2.0 weeks were required for B.1.1.7 to become dominant. The study highlights the applicability of RT-qPCR-based strategies to track specific mutations of variants of concern as soon as they are identified by clinical sequencing and their integration into existing wastewater surveillance programs, as a cost-effective approach to complement clinical testing during the COVID-19 pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Aguas Residuales
6.
J Virol ; 93(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31019055

RESUMEN

MLB astroviruses were identified 10 years ago in feces from children with gastroenteritis of unknown etiology and have been unexpectedly detected in severe cases of meningitis/encephalitis, febrile illness of unknown etiology, and respiratory syndromes. The aim of this study was to establish a cell culture system supporting MLB astrovirus replication. We used two clinical strains to infect several cell lines, an MLB1 strain from a gastroenteritis case, and an MLB2 strain associated with a neurologic infection. Efforts to propagate the viruses in the Caco-2 cell line were unsuccessful. In contrast, we identified two human nonintestinal cell lines, Huh-7 and A549, permissive for both genotypes. After serial passages in the Huh-7.5 cell line, the adapted strains were able to establish persistent infections in the Huh-7.5, Huh-7AI, and A549 cell lines, with high viral loads (up to 10 log10 genome copies/ml) detected by quantitative reverse transcription-PCR (RT-qPCR) in the culture supernatant. Immunofluorescence assays demonstrated infection in about 10% of cells in persistently infected cultures. Electron microscopy revealed particles of 32 to 33 nm in diameter after negative staining of cell supernatants and capsid arrays in ultrathin sections with a particularly high production in Huh-7.5 cells. Interferon (IFN) expression by infected cells and effect of exogenous IFN varied depending on the type of infection and the cell line. The availability of a cell culture system to propagate MLB astroviruses represents a key step to better understand their replicative cycle, as well as a source of viruses to conduct a wide variety of basic virologic studies.IMPORTANCE MLB astroviruses are emerging viruses infecting humans. More studies are required to determine their exact epidemiology, but several reports have already identified them as the cause of unexpected clinical diseases, including severe neurologic diseases. Our study provides the first description of a cell culture system for the propagation of MLB astroviruses, enabling the study of their replicative cycle. Moreover, we demonstrated the unknown capacity of MLB astrovirus to establish persistent infections in cell culture. Whether these persistent infections are also established in vivo remains unknown, but the clinical consequences would be of high interest if persistence was confirmed in vivo Finally, our analysis of IFN expression provides some trails to understand the mechanism by which MLB astroviruses can cause persistent infections in the assayed cultures.


Asunto(s)
Infecciones por Astroviridae/virología , Mamastrovirus/crecimiento & desarrollo , Mamastrovirus/fisiología , Replicación Viral/fisiología , Células A549 , Células CACO-2 , Cápside , Proteínas de la Cápside , Línea Celular , Heces , Gastroenteritis/virología , Genoma Viral , Genotipo , Humanos , Interferones/antagonistas & inhibidores , Interferones/metabolismo , Mamastrovirus/efectos de los fármacos , Mamastrovirus/genética , Microscopía Electrónica , Análisis de Secuencia , Carga Viral
7.
Clin Microbiol Rev ; 27(4): 1048-74, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25278582

RESUMEN

Human astroviruses (HAtVs) are positive-sense single-stranded RNA viruses that were discovered in 1975. Astroviruses infecting other species, particularly mammalian and avian, were identified and classified into the genera Mamastrovirus and Avastrovirus. Through next-generation sequencing, many new astroviruses infecting different species, including humans, have been described, and the Astroviridae family shows a high diversity and zoonotic potential. Three divergent groups of HAstVs are recognized: the classic (MAstV 1), HAstV-MLB (MAstV 6), and HAstV-VA/HMO (MAstV 8 and MAstV 9) groups. Classic HAstVs contain 8 serotypes and account for 2 to 9% of all acute nonbacterial gastroenteritis in children worldwide. Infections are usually self-limiting but can also spread systemically and cause severe infections in immunocompromised patients. The other groups have also been identified in children with gastroenteritis, but extraintestinal pathologies have been suggested for them as well. Classic HAstVs may be grown in cells, allowing the study of their cell cycle, which is similar to that of caliciviruses. The continuous emergence of new astroviruses with a potential zoonotic transmission highlights the need to gain insights on their biology in order to prevent future health threats. This review focuses on the basic virology, pathogenesis, host response, epidemiology, diagnostic assays, and prevention strategies for HAstVs.


Asunto(s)
Infecciones por Astroviridae/virología , Mamastrovirus/fisiología , Infecciones por Astroviridae/diagnóstico , Infecciones por Astroviridae/tratamiento farmacológico , Infecciones por Astroviridae/epidemiología , Infecciones por Astroviridae/prevención & control , Interacciones Huésped-Patógeno , Humanos , Mamastrovirus/clasificación , Mamastrovirus/patogenicidad
8.
J Virol ; 88(9): 5029-41, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24554668

RESUMEN

UNLABELLED: Hepatitis A virus (HAV) has a highly biased and deoptimized codon usage compared to the host cell and fails to inhibit host protein synthesis. It has been proposed that an optimal combination of abundant and rare codons controls the translation speed required for the correct capsid folding. The artificial shutoff host protein synthesis results in the selection of variants containing mutations in the HAV capsid coding region critical for folding, stability, and function. Here, we show that these capsid mutations resulted in changes in their antigenicity; in a reduced stability to high temperature, low pH, and biliary salts; and in an increased efficacy of cell entry. In conclusion, the adaptation to cellular shutoff resulted in the selection of large-plaque-producing virus populations. IMPORTANCE: HAV has a naturally deoptimized codon usage with respect to that of its cell host and is unable to shut down the cellular translation. This fact contributes to the low replication rate of the virus, in addition to other factors such as the highly inefficient internal ribosome entry site (IRES), and explains the outstanding physical stability of this pathogen in the environment mediated by a folding-dependent highly cohesive capsid. Adaptation to artificially induced cellular transcription shutoff resulted in a redeoptimization of its capsid codon usage, instead of an optimization. These genomic changes are related to an overall change of capsid folding, which in turn induces changes in the cell entry process. Remarkably, the adaptation to cellular shutoff allowed the virus to significantly increase its RNA uncoating efficiency, resulting in the selection of large-plaque-producing populations. However, these populations produced much-debilitated virions.


Asunto(s)
Adaptación Biológica , Proteínas de la Cápside/metabolismo , Codón/metabolismo , Virus de la Hepatitis A/fisiología , Biosíntesis de Proteínas , Proteínas de la Cápside/genética , Análisis Mutacional de ADN , Virus de la Hepatitis A/genética , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Pliegue de Proteína , Selección Genética , Análisis de Secuencia de ADN
9.
Int J Mol Sci ; 16(4): 6842-54, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25815599

RESUMEN

A universal vaccination program among preadolescents was implemented in Catalonia, Spain, during the period of 1999-2013 and its effectiveness has been clearly demonstrated by an overall significant attack rate reduction. However, reductions were not constant over time, and increases were again observed in 2002-2009 due to the occurrence of huge outbreaks. In the following years, in the absence of large outbreaks, the attack rate decreased again to very low levels. However, an increase of symptomatic cases in the <5 age group has recently been observed. This is an unexpected observation since children younger than 6 are mostly asymptomatic. Such a long vaccination campaign offers the opportunity to analyze not only the effectiveness of vaccination, but also the influence of the circulating genotypes on the incidence of hepatitis A among the different age groups. This study has revealed the emergence of genotype IC during a foodborne outbreak, the short-lived circulation of vaccine-escape variants isolated during an outbreak among the men-having-sex-with-men group, and the association of genotype IIIA with the increase of symptomatic cases among the very young. From a public health perspective, two conclusions may be drawn: vaccination is better at an early age, and the vaccination schedule must be complete and include all recommended vaccine doses.


Asunto(s)
Brotes de Enfermedades/prevención & control , Virus de la Hepatitis A Humana/genética , Hepatitis A/epidemiología , Hepatitis A/prevención & control , Vacunación Masiva/métodos , Adulto , Niño , Genotipo , Técnicas de Genotipaje , Hepatitis A/virología , Virus de la Hepatitis A Humana/clasificación , Humanos , Datos de Secuencia Molecular , Filogenia , ARN Viral/análisis , España/epidemiología , Adulto Joven
10.
Appl Environ Microbiol ; 80(20): 6499-505, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25107980

RESUMEN

Food-borne hepatitis A outbreaks may be prevented by subjecting foods at risk of virus contamination to moderate treatments of high hydrostatic pressure (HHP). A pretreatment promoting hepatitis A virus (HAV) capsid-folding changes enhances the virucidal effect of HHP, indicating that its efficacy depends on capsid conformation. HAV populations enriched in immature capsids (125S provirions) are more resistant to HHP, suggesting that mature capsids (150S virions) are more susceptible to this treatment. In addition, the monoclonal antibody (MAb) K24F2 epitope contained in the immunodominant site is a key factor for the resistance to HHP. Changes in capsid folding inducing a loss of recognition by MAb K24F2 render more susceptible conformations independently of the origin of such changes. Accordingly, codon usage-associated folding changes and changes stimulated by pH-dependent breathings, provided they confer a loss of recognition by MAb K24F2, induce a higher susceptibility to HHP. In conclusion, the resistance of HAV to HHP treatments may be explained by a low proportion of 150S particles combined with a good accessibility of the epitope contained in the immunodominant site close to the 5-fold axis.


Asunto(s)
Cápside/química , Virus de la Hepatitis A/fisiología , Inactivación de Virus , Cápside/inmunología , Epítopos , Presión Hidrostática , Oxidorreductasas/inmunología
11.
Food Microbiol ; 40: 55-63, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24549198

RESUMEN

A quadruplex Real-Time RT-PCR assay for the simultaneous quantitative detection of hepatitis A virus (HAV), norovirus (NoV) GI and GII, and mengovirus (used as process control for determination of the virus/nucleic acid extraction efficiency) has been developed. This multiplex assay has been comparatively evaluated with the individual monoplex assays and showed to be slightly less sensitive, with average ΔCq values of 0.90, 0.28 and 0.44 for HAV, NoV GI and NoV GII, respectively, in standard curves of viral RNA, or 0.32, 0.37 and 0.51 for the same viruses respectively, in naturally-contaminated samples. These ΔCq values were mostly negligible since it represented, in the worst case scenario, a loss of 0.43 log in genome copy numbers. The quadruplex assay shows similar theoretical detection limits than the monoplex assay for NoV GII, and 10 times higher for HAV and NoV GI. However, when naturally-contaminated food and water samples were tested, these theoretical detection thresholds were often exceeded and very low genome copy numbers (below the limit of detection) could be quantified. The quadruplex assay fulfills the requirements of the method developed by the European Committee on Standardization (CEN) for virus detection in selected foodstuffs with significant advantages in labor and reagent costs.


Asunto(s)
Bivalvos/virología , Agua Dulce/virología , Virus de la Hepatitis A/aislamiento & purificación , Reacción en Cadena de la Polimerasa Multiplex/métodos , Norovirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Mariscos/virología , Animales , Contaminación de Alimentos/análisis , Virus de la Hepatitis A/genética , Norovirus/clasificación , Norovirus/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas
12.
J Virol ; 86(18): 10070-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22787221

RESUMEN

Viral genome-linked proteins (VPgs) have been identified in several single-stranded positive-sense RNA virus families. The presence of such protein in the family Astroviridae has not been fully elucidated, although a putative VPg coding region in open reading frame 1a (ORF1a) of astrovirus with high amino acid sequence similarity to the VPg coding region of Caliciviridae has been previously identified. In this work we present several experimental findings that show that human astrovirus (HAstV) RNA encodes a VPg essential for viral infectivity: (i) RNase treatment of RNA purified from astrovirus-infected cells results in a single protein of 13 to 15 kDa, compatible with the predicted astrovirus VPg size; (ii) the antibody used to detect this 13- to 15-kDa protein is specifically directed against a region that includes the putative VPg coding region; (iii) the 13- to 15-kDa protein detected has been partially sequenced and the sequence obtained is contained in the computationally predicted VPg; (iv) the protein resulting from this putative VPg coding region is a highly disordered protein, resembling the VPg of sobemo-, calici- and potyviruses; (v) proteolytic treatment of the genomic RNA leads to loss of infectivity; and (vi) mutagenesis of Tyr-693 included in the putative VPg protein is lethal for HAstV replication, which strongly supports its functional role in the covalent link with the viral RNA.


Asunto(s)
Mamastrovirus/genética , Mamastrovirus/patogenicidad , Proteínas Virales/genética , Proteínas Virales/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células CACO-2 , Línea Celular , Cricetinae , Genoma Viral , Humanos , Mamastrovirus/fisiología , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , ARN Viral/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Transfección , Proteínas Virales/química , Virulencia/genética , Virulencia/fisiología , Replicación Viral
13.
J Virol ; 86(15): 7887-95, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22593170

RESUMEN

Hepatitis A virus (HAV) has previously been reported to bind to human red blood cells through interaction with glycophorin A. Residue K221 of VP1 and the surrounding VP3 residues are involved in such an interaction. This capsid region is specifically recognized by the monoclonal antibody H7C27. A monoclonal antibody-resistant mutant with the mutation G1217D has been isolated. In the present study, the G1217D mutant was characterized physically and biologically in comparison with the parental HM175 43c strain. The G1217D mutant is more sensitive to acid pH and binds more efficiently to human and rat erythrocytes than the parental 43c strain. In a rat model, it is eliminated from serum more rapidly and consequently reaches the liver with a certain delay compared to the parental 43c strain. In competition experiments performed in vivo in the rat model, the G1217D mutant was efficiently outcompeted by the parental 43c strain. Only in the presence of antibodies reacting specifically with the parental 43c strain could the G1217D mutant outcompete the parental 43c strain in serum, although the latter still showed a remarkable ability to reach the liver. Altogether, these results indicate that the G1217D mutation induces a low fitness phenotype which could explain the lack of natural antigenic variants of the glycophorin A binding site.


Asunto(s)
Eritrocitos/metabolismo , Glicoforinas/metabolismo , Virus de la Hepatitis A/metabolismo , Mutación Missense , Sustitución de Aminoácidos , Animales , Sitios de Unión , Eritrocitos/virología , Femenino , Glicoforinas/genética , Virus de la Hepatitis A/genética , Humanos , Concentración de Iones de Hidrógeno , Ratas , Ratas Wistar
14.
Water Res ; 242: 120223, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37354838

RESUMEN

Here we analyze SARS-CoV-2 genome copies in Catalonia's wastewater during the Omicron peak and develop a mathematical model to estimate the number of infections and the temporal relationship between reported and unreported cases. 1-liter samples from 16 wastewater treatment plants were collected and used in a compartmental epidemiological model. The average correlation between genome copies and reported cases was 0.85, with an average delay of 8.8 days. The model estimated that 53% of the population was infected, compared to the 19% reported cases. The under-reporting was highest in November and December 2021. The maximum genome copies shed in feces by an infected individual was estimated to range from 1.4×108 gc/g to 4.4×108 gc/g. Our framework demonstrates the potential of wastewater data as a leading indicator for daily new infections, particularly in contexts with low detection rates. It also serves as a complementary tool for prevalence estimation and offers a general approach for integrating wastewater data into compartmental models.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Prevalencia , SARS-CoV-2 , Aguas Residuales , Sesgo , Pruebas Diagnósticas de Rutina , ARN Viral , Prueba de COVID-19
15.
Nat Rev Dis Primers ; 9(1): 51, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770459

RESUMEN

Hepatitis A is a vaccine-preventable infection caused by the hepatitis A virus (HAV). Over 150 million new infections of hepatitis A occur annually. HAV causes an acute inflammatory reaction in the liver that usually resolves spontaneously without chronic sequelae. However, up to 20% of patients experience a prolonged or relapsed course and <1% experience acute liver failure. Host factors, such as immunological status, age, pregnancy and underlying hepatic diseases, can affect the severity of disease. Anti-HAV IgG antibodies produced in response to HAV infection persist for life and protect against re-infection; vaccine-induced antibodies against hepatitis A confer long-term protection. The WHO recommends vaccination for individuals at higher risk of infection and/or severe disease in countries with very low and low hepatitis A virus endemicity, and universal childhood vaccination in intermediate endemicity countries. To date, >25 countries worldwide have implemented such programmes, resulting in a reduction in the incidence of HAV infection. Improving hygiene and sanitation, rapid identification of outbreaks and fast and accurate intervention in outbreak control are essential to reducing HAV transmission.

16.
Pathogens ; 12(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38133289

RESUMEN

Enteric viruses are the major cause of gastroenteritis and enteric hepatitis worldwide, but in some areas like Saudi Arabia, little is known about their presence in water sources. The available information from clinical samples is not enough to figure out their actual prevalence. The aim of this study was to gather information for the first time in Saudi Arabia on the presence of the Norovirus (NoV) genogroup GI and GII, hepatitis A virus (HAV), and hepatitis E virus (HEV) in water. For this purpose, thirteen monthly samples were collected from Lake Wadi Hanifa and surrounding wells from December 2014 to November 2015. Viruses were detected and quantified using real-time RT-qPCR. Despite HEV findings being anecdotic, our results highlight interesting behaviors of the other viruses. There was a higher prevalence of noroviruses in Wadi Hanifa samples than in well water samples (46.43% vs. 12.5% of NoV GI; 66.67% vs. 8.33% of NoV GII). On the contrary, similar levels of HAV positivity were observed (40.48% in surface water vs. 43.06% in well water). Also, a strong influence of flooding events on HAV and NoV GI occurrence was observed in both surface and well water samples, with NoV GII apparently not affected.

17.
Microbiol Spectr ; 11(1): e0466422, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36695578

RESUMEN

The pathogenic mechanisms determining the diverse clinical outcomes of HEV infection (e.g., self-limiting versus chronic or symptomatic versus asymptomatic) are not yet understood. Because specific microRNA signatures during viral infection inform the cellular processes involved in virus replication and pathogenesis, we investigated plasma microRNA profiles in 44 subjects, including patients with symptomatic acute (AHE, n = 7) and chronic (CHE, n = 6) hepatitis E, blood donors with asymptomatic infection (HEV BDs, n = 9), and anti-HEV IgG+ IgM- (exposed BDs, n = 10) and anti-HEV IgG- IgM- (naive BDs, n = 12) healthy blood donors. By measuring the abundance of 179 microRNAs in AHE patients and naive BDs by reverse transcription-quantitative PCR (RT-qPCR), we identified 51 potential HEV-regulated microRNAs (P value adjusted for multiple testing by the Benjamini-Hochberg correction [PBH] < 0.05). Further analysis showed that HEV genotype 3 infection is associated with miR-122, miR-194, miR-885, and miR-30a upregulation and miR-221, miR-223, and miR-27a downregulation. AHE patients showed significantly higher levels of miR-122 and miR-194 and lower levels of miR-221, miR-27a, and miR-335 than HEV BDs. This specific microRNA signature in AHE could promote virus replication and reduce antiviral immune responses, contributing to the development of clinical symptoms. We found that miR-194, miR-335, and miR-221 can discriminate between asymptomatic HEV infections and those developing acute symptoms, whereas miR-335 correctly classifies AHE and CHE patients. Our data suggest that diverse outcomes of HEV infection result from different HEV-induced microRNA dysregulations. The specific microRNA signatures described offer novel information that may serve to develop biomarkers of HEV infection outcomes and improve our understanding of HEV pathogenesis, which may facilitate the identification of antiviral targets. IMPORTANCE There is increasing evidence that viruses dysregulate the expression and/or secretion of microRNAs to promote viral replication, immune evasion, and pathogenesis. In this study, we evaluated the change in microRNA abundance in patients with acute or chronic HEV infection and asymptomatic HEV-infected blood donors. Our results suggest that different HEV-induced microRNA dysregulations may contribute to the diverse clinical manifestations of HEV infection. The specific microRNA signatures identified in this study hold potential as predictive markers of HEV infection outcomes, which would improve the clinical management of hepatitis E patients, particularly of those developing severe symptoms or chronic infections. Furthermore, this study provides new insights into HEV pathogenesis that may serve to identify antiviral targets, which would have a major impact because no effective treatments are yet available.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , MicroARNs , Humanos , Hepatitis E/diagnóstico , Virus de la Hepatitis E/genética , MicroARNs/genética , Inmunoglobulina G , Inmunoglobulina M , Antivirales
18.
Environ Microbiol ; 14(2): 494-502, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22118046

RESUMEN

Human noroviruses (NoV) were quantified and characterized in an 18 month survey conducted along the Llobregat river catchment in Spain. Sample types included freshwater, untreated and treated wastewater and drinking water. High NoV genome copy numbers were reported, reaching up to 10(6) l(-1) and 10(9) l(-1) in freshwater and raw sewage respectively. In both types of samples, GII NoV genome copies outnumbered those of GI, although without significance. All samples of semi-treated and treated drinking water were negative for NoV. A clear seasonality of NoV occurrence was observed both in river water and sewage samples, with significantly higher genome copy numbers in the cold than in the warm months period. Mean NoV log reduction rates after biological treatment of sewage were 2.2 and 3.1 for GI and GII respectively. A total of 77 NoV strains isolated in the Llobregat river catchment could be phylogenetically characterized, 44 belonging to GI and 33 to GII. The most prevalent genotype was GI.4, followed by GII.4 and GII.21. Several variants of the pandemic GII.4 strain were detected in the environment, corroborating their circulation among the population.


Asunto(s)
Norovirus/crecimiento & desarrollo , Ríos/virología , Microbiología del Agua , Abastecimiento de Agua/análisis , Secuencia de Bases , Agua Potable/virología , Agua Dulce/virología , Genotipo , Humanos , Datos de Secuencia Molecular , Norovirus/clasificación , Norovirus/genética , Norovirus/aislamiento & purificación , Filogenia , Estaciones del Año , Aguas del Alcantarillado/virología , España , Contaminación del Agua/estadística & datos numéricos , Abastecimiento de Agua/estadística & datos numéricos
19.
J Virol ; 85(9): 4470-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21325412

RESUMEN

Human astrovirus nonstructural C-terminal nsP1a protein (nsP1a/4) colocalizes with the endoplasmic reticulum and viral RNA. It has been suggested that nsP1a/4 protein is involved in the RNA replication process in endoplasmic reticulum-derived intracellular membranes. A hypervariable region (HVR) is contained in the nsP1a/4 protein, and different replicative patterns can be distinguished depending on its variability. In the present work, both the astrovirus RNA-dependent RNA polymerase and four types (IV, V, VI, and XII) of nsP1a/4 proteins have been cloned and expressed in the baculovirus system to analyze their interactions. Different isoforms of each of the nsP1a/4 proteins exist: a nonphosphorylated isoform and different phosphorylated isoforms. While the polymerase accumulates as a monomer, the nsP1a/4 proteins accumulate as oligomers. The oligomerization domain of nsP1a/4-V is mapped between residues 176 and 209. For all studied genotypes, oligomers mainly contain the nonphosphorylated isoform. When RNA polymerase is coexpressed with nsP1a/4 proteins, they interact, likely forming heterodimers. The polymerase binding region has been mapped in the nsP1a/4-V protein between residues 88 and 176. Phosphorylated isoforms of nsP1a/4 type VI show a stronger interactive pattern with the polymerase than the nonphosphorylated isoform. This difference is not observed in genotypes IV and V, suggesting a role of the HVR in modulating the interaction of the nsP1a/4 protein with the polymerase through phosphorylation/dephosphorylation of some critical residues.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Mamastrovirus/fisiología , Fosfoproteínas/metabolismo , Mapeo de Interacción de Proteínas , Proteínas no Estructurales Virales/metabolismo , Baculoviridae/genética , Clonación Molecular , Expresión Génica , Humanos , Unión Proteica , Multimerización de Proteína
20.
PLoS Pathog ; 6(3): e1000797, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20221432

RESUMEN

Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.


Asunto(s)
Proteínas de la Cápside/genética , Codón/genética , Virus de la Hepatitis A/genética , Biosíntesis de Proteínas/genética , ARN de Transferencia/genética , Anticodón/genética , Proteínas de la Cápside/química , Dactinomicina/farmacología , Factor 4G Eucariótico de Iniciación/genética , Regulación Viral de la Expresión Génica , Proteínas HSP90 de Choque Térmico/fisiología , Virus de la Hepatitis A/crecimiento & desarrollo , Pliegue de Proteína , Inhibidores de la Síntesis de la Proteína/farmacología , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA