Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(3): 1359-1373, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38015463

RESUMEN

Viral RNA genomes are modified by epitranscriptomic marks, including 2'-O-methylation that is added by cellular or viral methyltransferases. 2'-O-Methylation modulates RNA structure, function and discrimination between self- and non-self-RNA by innate immune sensors such as RIG-I-like receptors. This is illustrated by human immunodeficiency virus type-1 (HIV-1) that decorates its RNA genome through hijacking the cellular FTSJ3 2'-O-methyltransferase, thereby limiting immune sensing and interferon production. However, the impact of such an RNA modification during viral genome replication is poorly understood. Here we show by performing endogenous reverse transcription on methylated or hypomethylated HIV-1 particles, that 2'-O-methylation negatively affects HIV-1 reverse transcriptase activity. Biochemical assays confirm that RNA 2'-O-methylation impedes reverse transcriptase activity, especially at low dNTP concentrations reflecting those in quiescent cells, by reducing nucleotide incorporation efficiency and impairing translocation. Mutagenesis highlights K70 as a critical amino acid for the reverse transcriptase to bypass 2'-O-methylation. Hence, the observed antiviral effect due to viral RNA 2'-O-methylation antagonizes the FTSJ3-mediated proviral effects, suggesting the fine-tuning of RNA methylation during viral replication.


Asunto(s)
Transcriptasa Inversa del VIH , VIH-1 , Procesamiento Postranscripcional del ARN , ARN Viral , Replicación Viral , Humanos , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , VIH-1/genética , VIH-1/metabolismo , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Nucleótidos/metabolismo , Transcripción Reversa , ARN Viral/metabolismo
2.
J Infect Dis ; 229(2): 443-447, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37561039

RESUMEN

Zika virus has been circulating in Thailand since 2002 through continuous but likely low-level circulation. Here, we describe an infection in a pregnant woman who traveled to Thailand and South America during her pregnancy. By combining phylogenetic analysis with the patient's travel history and her pregnancy timeline, we confirmed that she likely got infected in Thailand at the end of 2021. This imported case of microcephaly highlights that Zika virus circulation in the country still constitutes a health risk, even in a year of lower incidence. MAIN POINTS: Here we trace the origin of travel-acquired microcephaly to Thailand, providing additional evidence that pre-American lineages of Zika virus can harm the fetus and highlighting that Zika virus constitutes a health threat even in a year of lower incidence.


Asunto(s)
Microcefalia , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika , Virus Zika , Humanos , Embarazo , Femenino , Virus Zika/genética , Viaje , Tailandia/epidemiología , Filogenia
4.
EMBO Rep ; 23(5): e53820, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35239997

RESUMEN

Engineering recombinant viruses is a pre-eminent tool for deciphering the biology of emerging viral pathogens such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the large size of coronavirus genomes renders the current reverse genetics methods challenging. Here, we describe a simple method based on "infectious subgenomic amplicons" (ISA) technology to generate recombinant infectious coronaviruses with no need for reconstruction of the complete genomic cDNA and apply this method to SARS-CoV-2 and also to the feline enteric coronavirus. In both cases we rescue wild-type viruses with biological characteristics similar to original strains. Specific mutations and fluorescent red reporter genes can be readily incorporated into the SARS-CoV-2 genome enabling the generation of a genomic variants and fluorescent reporter strains for in vivo experiments, serological diagnosis, and antiviral assays. The swiftness and simplicity of the ISA method has the potential to facilitate the advance of coronavirus reverse genetics studies, to explore the molecular biological properties of the SARS-CoV-2 variants, and to accelerate the development of effective therapeutic reagents.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Antivirales , COVID-19/genética , Gatos , Genética Inversa , SARS-CoV-2/genética
5.
Euro Surveill ; 29(13)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38551097

RESUMEN

In 2023, dengue virus serotype 2 (DENV2) affected most French overseas territories. In the French Caribbean Islands, viral circulation continues with > 30,000 suspected infections by March 2024. Genome sequence analysis reveals that the epidemic lineage in the French Caribbean islands has also become established in French Guiana but not Réunion. It has moreover seeded autochthonous circulation events in mainland France. To guide prevention of further inter-territorial spread and DENV introduction in non-endemic settings, continued molecular surveillance and mosquito control are essential.


Asunto(s)
Epidemias , Humanos , Guyana Francesa/epidemiología , Epidemiología Molecular , Indias Occidentales/epidemiología , Francia/epidemiología
6.
J Med Virol ; 95(6): e28853, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37288615

RESUMEN

In May 2022, several countries reported mpox cases from patients without history of traveling to endemic areas. France was one of the most affected European countries by this outbreak. In this study, the clinical characteristics of mpox cases in France were described, and the genetic diversity of the virus was studied. Patients diagnosed with mpox infection (quantitative polymerase chain reaction ct < 28) between May 21, and July 4, 2022 and between 16th August and 10th September 2022 were included to this study. Twelve amplicons corresponding to the most polymorphic regions of the mpox genome and covering ~30 000 nucleotides were generated and sequenced using the S5 XL Ion Torrent technology to evaluate the genetic diversity of mpox sequences. One hundred and forty-eight patients were diagnosed with mpox-infection. 95% were men, 5% transgender (M-to-F), 50% were taking human immunodeficiency virus (HIV) pre-exposure prophylaxis, and 25% were HIV seropositive. One hundred and sixty-two samples (some patients had two samples) were sequenced and compared to GenBank sequences. Overall, low genetic diversity of mpox sequences was found compared with pre-epidemic Western-African sequences, with 32 distinct mutational patterns. This study provides a first glance at the mutational landscape of early mpox 2022 circulating strains in Paris (France).


Asunto(s)
Infecciones por VIH , Mpox , Masculino , Humanos , Femenino , Paris/epidemiología , Monkeypox virus , Francia/epidemiología , Genómica , Brotes de Enfermedades
7.
J Gen Virol ; 102(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34797756

RESUMEN

Sandfly-borne phleboviruses are distributed widely throughout the Mediterranean Basin, presenting a threat to public health in areas where they circulate. However, the true diversity and distribution of pathogenic and apathogenic sandfly-borne phleboviruses remains a key issue to be studied. In the Balkans, most published data rely on serology-based studies although virus isolation has occasionally been reported. Here, we report the discovery of two novel sandfly-borne phleboviruses, provisionally named Zaba virus (ZABAV) and Bregalaka virus (BREV), which were isolated in Croatia and North Macedonia, respectively. This constitutes the first isolation of phleboviruses in both countries. Genetic analysis based on complete coding sequences indicated that ZABAV and BREV are distinct from each other and belong to the genus Phlebovirus, family Phenuiviridae. Phylogenetic and amino acid modelling of viral polymerase shows that ZABAV and BREV are new members of the Salehabad phlebovirus species and the Adana phlebovirus species, respectively. Moreover, sequence-based vector identification suggests that ZABAV is mainly transmitted by Phlebotomus neglectus and BREV is mainly transmitted by Phlebotomus perfiliewi. BREV neutralizing antibodies were detected in 3.3% of human sera with rates up to 16.7% in certain districts, demonstrating that BREV frequently infects humans in North Macedonia. In vitro viral growth kinetics experiments demonstrated viral replication of both viruses in mammalian and mosquito cells. In vivo experimental studies in mice suggest that ZABAV and BREV exhibit characteristics making them possible human pathogens.


Asunto(s)
Insectos Vectores/virología , Phlebovirus/aislamiento & purificación , Psychodidae/virología , Animales , Croacia , Mosquitos Vectores , Phlebovirus/clasificación , Phlebovirus/genética , Filogenia , República de Macedonia del Norte
8.
J Med Virol ; 93(8): 5163-5166, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33605462

RESUMEN

Enteroviruses A71 (EVs-A71) are known to cause serious neurological infections, especially in the pediatric population. We report here eight cases of EV-A71 infection diagnosed in Marseille over the past 2 years (seven cases in 2019 and one case in 2020). Only children under 5 years of age were affected, including one case of acute flaccid paralysis. Viral RNA was detected by RT-PCR in peripheral samples for all cases (feces and upper respiratory samples). Phylogenetic analyses based on VP1 and 2C3C coding regions revealed that all these cases of EV-A71 infection were caused by viruses belonging to the subgenogroup C1 that currently circulates in Europe and that these viruses are genetically closed to other EVs-A71 recently detected in European countries. These data therefore reinforce the usefulness of the enterovirus surveillance network and the need for systematic screening for EV-A71 in case of an enteroviral infection. This study therefore suggests that the systematic screening for EV-A71 in case of enteroviral infection could provide additional data for enterovirus surveillance networks.


Asunto(s)
Enterovirus Humano A/aislamiento & purificación , Infecciones por Enterovirus/virología , Preescolar , Enterovirus Humano A/clasificación , Enterovirus Humano A/genética , Infecciones por Enterovirus/diagnóstico , Infecciones por Enterovirus/terapia , Francia , Genoma Viral/genética , Genotipo , Humanos , Lactante , Recién Nacido , Parálisis/terapia , Parálisis/virología , Filogenia , ARN Viral/genética , Estudios Retrospectivos , Resultado del Tratamiento , Proteínas Virales/genética
9.
Mult Scler ; 27(2): 320-323, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32584194

RESUMEN

We report a fatal case of coxsackievirus B4 chronic infection in a 30-year-old woman with a diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disorder controlled by rituximab monotherapy for 3 years. Initially presenting as self-limited meningitis, the infection remained silent for 8 months before the sudden onset of fulminant myocarditis. Analysis of the complete genome showed that the same virus was responsible for both episodes.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Neuromielitis Óptica , Adulto , Autoanticuerpos , Sistema Nervioso Central , Infecciones por Enterovirus/tratamiento farmacológico , Femenino , Humanos , Glicoproteína Mielina-Oligodendrócito
10.
Euro Surveill ; 26(41)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34651571

RESUMEN

We investigated a COVID-19 outbreak at a fire station in Marseille, France. Confirmed cases were defined as individuals with positive SARS-CoV-2 reverse transcription (RT)-PCR and/or neutralising antibodies. All 85 firefighters at work during the outbreak period were included after questioning and sampled for RT-PCR and viral neutralisation assay. Twenty-three firefighters were confirmed positive, 19 of them were symptomatic, and four asymptomatic cases were confirmed by virus neutralisation. A total of 22 firefighters had specific neutralising antibodies against SARS-CoV-2. Neutralising antibodies were found in four asymptomatic and 18 symptomatic cases. Eleven symptomatic cases had high titres (≥ 1:80). The earliest detection of neutralising antibodies was 7 days after symptom onset, and 80% had neutralising antibodies 15 days after onset. One viral culture was positive 13 days after onset. The attack rate was 27%. We identified two introductions of the virus in this outbreak, through a presymptomatic and a paucisymptomatic case. Asymptomatic cases were not the source of a third generation of cases, although they worked without wearing a mask, indicating that asymptomatic cases did not play a significant role in this outbreak. Management and strategy based on early research of clinical signs associated with self-quarantine was effective.


Asunto(s)
COVID-19 , Bomberos , Brotes de Enfermedades , Francia/epidemiología , Humanos , SARS-CoV-2
11.
PLoS Med ; 15(3): e1002535, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29584730

RESUMEN

BACKGROUND: Despite repeated outbreaks, in particular the devastating 2014-2016 epidemic, there is no effective treatment validated for patients with Ebola virus disease (EVD). Among the drug candidates is the broad-spectrum polymerase inhibitor favipiravir, which showed a good tolerance profile in patients with EVD (JIKI trial) but did not demonstrate a strong antiviral efficacy. In order to gain new insights into the antiviral efficacy of favipiravir and improve preparedness and public health management of future outbreaks, we assess the efficacy achieved by ascending doses of favipiravir in Ebola-virus-infected nonhuman primates (NHPs). METHODS AND FINDINGS: A total of 26 animals (Macaca fascicularis) were challenged intramuscularly at day 0 with 1,000 focus-forming units of Ebola virus Gabon 2001 strain and followed for 21 days (study termination). This included 13 animals left untreated and 13 treated with doses of 100, 150, and 180 mg/kg (N = 3, 5, and 5, respectively) favipiravir administered intravenously twice a day for 14 days, starting 2 days before infection. All animals left untreated or treated with 100 mg/kg died within 10 days post-infection, while animals receiving 150 and 180 mg/kg had extended survival (P < 0.001 and 0.001, respectively, compared to untreated animals), leading to a survival rate of 40% (2/5) and 60% (3/5), respectively, at day 21. Favipiravir inhibited viral replication (molecular and infectious viral loads) in a drug-concentration-dependent manner (P values < 0.001), and genomic deep sequencing analyses showed an increase in virus mutagenesis over time. These results allowed us to identify that plasma trough favipiravir concentrations greater than 70-80 µg/ml were associated with reduced viral loads, lower virus infectivity, and extended survival. These levels are higher than those found in the JIKI trial, where patients had median trough drug concentrations equal to 46 and 26 µg/ml at day 2 and day 4 post-treatment, respectively, and suggest that the dosing regimen in the JIKI trial was suboptimal. The environment of a biosafety level 4 laboratory introduces a number of limitations, in particular the difficulty of conducting blind studies and performing detailed pharmacological assessments. Further, the extrapolation of the results to patients with EVD is limited by the fact that the model is fully lethal and that treatment initiation in patients with EVD is most often initiated several days after infection, when symptoms and high levels of viral replication are already present. CONCLUSIONS: Our results suggest that favipiravir may be an effective antiviral drug against Ebola virus that relies on RNA chain termination and possibly error catastrophe. These results, together with previous data collected on tolerance and pharmacokinetics in both NHPs and humans, support a potential role for high doses of favipiravir for future human interventions.


Asunto(s)
Amidas/farmacología , Amidas/farmacocinética , Antivirales/farmacología , Ebolavirus , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Pirazinas/farmacología , Pirazinas/farmacocinética , Animales , Relación Dosis-Respuesta a Droga , Femenino , Genoma Viral , Humanos , Macaca fascicularis , Mutagénesis , ARN/análisis , Factores de Tiempo , Investigación Biomédica Traslacional , Carga Viral
12.
J Hepatol ; 65(3): 499-508, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27174035

RESUMEN

BACKGROUND & AIMS: Ribavirin monotherapy is the preferred treatment for chronic hepatitis E, although occasional treatment failure occurs. We present a patient with chronic hepatitis E experiencing ribavirin treatment failure with a completely resistant phenotype. We aimed to identify viral mutations associated with treatment failure and explore the underlying mechanisms. METHODS: Viral genomes were deep-sequenced at different time points and the role of identified mutations was assessed in vitro using mutant replicons, antiviral assays, cell culture of patient-derived virus and deep-sequencing. RESULTS: Ribavirin resistance was associated with Y1320H, K1383N and G1634R mutations in the viral polymerase, but also an insertion in the hypervariable region comprising a duplication and a polymerase-derived fragment. Analysis of these genome alterations in vitro revealed replication-increasing roles for Y1320H and G1634R mutations and the hypervariable region insertion. In contrast, the K1383N mutation in the polymerase F1-motif suppressed viral replication and increased the in vitro sensitivity to ribavirin, contrary to the clinical phenotype. Analysis of the replication of mutant full-length virus and in vitro culturing of patient-derived virus confirmed that sensitivity to ribavirin was retained. Finally, deep-sequencing of hepatitis E virus genomes revealed that ribavirin is mutagenic to viral replication in vitro and in vivo. CONCLUSIONS: Mutations Y1320H, G1634R and the hypervariable region insertion compensated for K1383N-associated replication defects. The specific role of the K1383N mutation remains enigmatic, but it appears to be of importance for the ribavirin resistant phenotype in this patient. LAY SUMMARY: Ribavirin is the most common treatment for chronic hepatitis E and is mostly effective, although some cases of ribavirin treatment failure have been described. Here, we report on a particular case of ribavirin resistance and investigate the underlying causes of treatment failure. Mutations in the viral polymerase, an essential enzyme for viral replication, appear to be responsible.


Asunto(s)
Virus de la Hepatitis E , Antivirales , Farmacorresistencia Viral , Humanos , Mutación , Ribavirina , Insuficiencia del Tratamiento , Replicación Viral
13.
J Gen Virol ; 97(3): 602-610, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26704069

RESUMEN

A new phlebovirus, Medjerda Valley virus (MVV), was isolated from one pool of Phlebotomus sp. (Diptera; Psychodidae) sandflies trapped in the vicinity of the Utique site, northern Tunisia. Genetic analysis based on complete coding of genomic sequences of the three RNA segments indicated that MVV is most closely related to members of the Salehabad virus species, where it is the fourth virus for which the complete sequence is available. A seroprevalence study was performed to search for neutralizing antibodies in human sera in the same region. The results demonstrate that in this area, MVV can readily infect humans despite low seroprevalence rates. Salehabad species viruses have generally been considered to be a group of viruses with little medical or veterinary interest. This view deserves to be revisited according to our human seroprevalence results, together with high animal infection rate of Adana virus and recent evidence of human infection with Adria virus in Greece. Further studies are needed to investigate the capacity of each specific member of the Salehabad virus species to cause human or animal diseases.


Asunto(s)
Insectos Vectores/virología , Fiebre por Flebótomos/inmunología , Phlebovirus/inmunología , Phlebovirus/aislamiento & purificación , Psychodidae/virología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Genoma Viral , Grecia , Humanos , Datos de Secuencia Molecular , Fiebre por Flebótomos/epidemiología , Fiebre por Flebótomos/transmisión , Fiebre por Flebótomos/virología , Phlebovirus/clasificación , Phlebovirus/genética , Filogenia , Estudios Seroepidemiológicos , Túnez/epidemiología
14.
J Virol ; 89(8): 4080-91, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25653443

RESUMEN

UNLABELLED: A new phlebovirus, Adana virus, was isolated from a pool of Phlebotomus spp. (Diptera; Psychodidae) in the province of Adana, in the Mediterranean region of Turkey. Genetic analysis based on complete coding of genomic sequences indicated that Adana virus belongs to the Salehabad virus species of the genus Phlebovirus in the family Bunyaviridae. Adana virus is the third virus of the Salehabad virus species for which the complete sequence has been determined. To understand the epidemiology of Adana virus, a seroprevalence study using microneutralization assay was performed to detect the presence of specific antibodies in human and domestic animal sera collected in Adana as well as Mersin province, located 147 km west of Adana. The results demonstrate that the virus is present in both provinces. High seroprevalence rates in goats, sheep, and dogs support intensive exposure to Adana virus in the region, which has not been previously reported for any virus included in the Salehabad serocomplex; however, low seroprevalence rates in humans suggest that Adana virus is not likely to constitute an important public health problem in exposed human populations, but this deserves further studies. IMPORTANCE: Until recently, in the genus Phlebovirus, the Salehabad virus species consisted of two viruses: Salehabad virus, isolated from sand flies in Iran, and Arbia virus, isolated from sand flies in Italy. Here we present the isolation and complete genome characterization of the Adana virus, which we propose to be included in the Salehabad virus species. To our knowledge, this is the first report of the isolation and complete genome characterization, from sand flies in Turkey, of a Salehabad virus-related phlebovirus with supporting seropositivity in the Mediterranean, Aegean, and Central Anatolia regions, where phleboviruses have been circulating and causing outbreaks. Salehabad species viruses have generally been considered to be a group of viruses with little medical or veterinary interest. This view deserves to be revisited according to our results, which indicate a high animal infection rate of Adana virus and recent evidence of human infection with Adria virus in Greece.


Asunto(s)
Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/veterinaria , Perros/virología , Cabras/virología , Phlebotomus/virología , Phlebovirus/genética , Ovinos/virología , Animales , Secuencia de Bases , Infecciones por Bunyaviridae/virología , Análisis por Conglomerados , Humanos , Insectos Vectores/virología , Microscopía Electrónica/veterinaria , Datos de Secuencia Molecular , Pruebas de Neutralización/veterinaria , Phlebovirus/clasificación , Phlebovirus/aislamiento & purificación , Phlebovirus/ultraestructura , Filogenia , Análisis de Secuencia de ADN/veterinaria , Estudios Seroepidemiológicos , Turquía/epidemiología
16.
Virol J ; 11: 35, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24564892

RESUMEN

BACKGROUND: Acute respiratory infections represent a serious public health issue worldwide but virological aetiologies of Influenza Like Illnesses (ILIs) remain largely unknown in developing countries. This study represents the first attempt to characterise viral aetiologies of ILIs in Bolivia. METHODS: It was performed in Santa Cruz city from January 2010 to September 2012, based on 564 naso-pharyngeal swabs collected in a National Reference Laboratory and real-time PCR techniques, viral cultures and phylogenetic analyses. RESULTS: 50.2% of samples were positive for at least one virus with influenza viruses (Flu A: ~15%; Flu B: ~9%), rhinoviruses (~8%), coronaviruses (~5%) and hRSV (~4%) being the most frequently identified. The pattern of viral infections varied according to age groups. The elucidation rate was the highest (>60%) amongst patients under 10 yo and the lowest (<40%) amongst patients ≥60 yo. Nearly 3% of samples showed dual viral infections. Epidemiological peaks were associated with a predominant virus but generally included 30-50% of infections by different viruses. Unexpectedly, the frequency of influenza in the 0-4 yo population was very low and a complete hRSV eclipse occurred in 2011. Genetic analyses indicated that distinct evolutionary lineages of Flu A(H1N1)pdm2009, Flu A/H3N2 and Flu B have co-circulated in Bolivia in the study period, originating from Central and North America, Europe, Asia and Australia. CONCLUSION: Our results emphasise the requirement for a reinforced epidemiological and genetic follow-up of influenza and other ILIs in Bolivia to further inform the preparation of vaccines used in the region, guide vaccination campaigns and improve the medical management of patients.


Asunto(s)
Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/virología , Virosis/epidemiología , Virosis/virología , Virus/clasificación , Virus/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Bolivia/epidemiología , Niño , Preescolar , Análisis por Conglomerados , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Nasofaringe/virología , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Cultivo de Virus , Virus/genética , Adulto Joven
17.
Emerg Microbes Infect ; 13(1): 2356140, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38742328

RESUMEN

Reverse genetic systems are mainly used to rescue recombinant viral strains in cell culture. These tools have also been used to generate, by inoculating infectious clones, viral strains directly in living animals. We previously developed the "Infectious Subgenomic Amplicons" (ISA) method, which enables the rescue of single-stranded positive sense RNA viruses in vitro by transfecting overlapping subgenomic DNA fragments. Here, we provide proof-of-concept for direct in vivo generation of infectious particles following the inoculation of subgenomic amplicons. First, we rescued a strain of tick-borne encephalitis virus in mice to transpose the ISA method in vivo. Subgenomic DNA fragments were amplified using a 3-fragment reverse genetics system and inoculated intramuscularly. Almost all animals were infected when quantities of DNA inoculated were at least 20 µg. We then optimized our procedure in order to increase the animal infection rate. This was achieved by adding an electroporation step and/or using a simplified 2- fragment reverse genetics system. Under optimal conditions, a large majority of animals were infected with doses of 20 ng of DNA. Finally, we demonstrated the versatility of this method by applying it to Japanese encephalitis and Chikungunya viruses. This method provides an efficient strategy for in vivo rescue of arboviruses. Furthermore, in the context of the development of DNA-launched live attenuated vaccines, this new approach may facilitate the generation of attenuated strains in vivo. It also enables to deliver a substance free of any vector DNA, which seems to be an important criterion for the development of human vaccines.


Asunto(s)
Arbovirus , Virus de la Encefalitis Transmitidos por Garrapatas , Genética Inversa , Animales , Ratones , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Genética Inversa/métodos , Arbovirus/genética , Virus Chikungunya/genética , Virus de la Encefalitis Japonesa (Especie)/genética , ADN Viral/genética , Encefalitis Transmitida por Garrapatas/virología , Femenino , Genoma Viral , Fiebre Chikungunya/virología , Humanos
18.
Heliyon ; 10(10): e30862, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803975

RESUMEN

The SARS-CoV-2 pandemic has highlighted the need for broad-spectrum antiviral drugs to respond promptly to viral emergence. We conducted a preclinical study of molnupiravir (MOV) against SARS-CoV-2 to fully characterise its antiviral properties and mode of action. The antiviral activity of different concentrations of MOV was evaluated ex vivo on human airway epithelium (HAE) and in vivo in a hamster model at three escalating doses (150, 300 and 400 mg/kg/day) according to three different regimens (preventive, pre-emptive and curative). We assessed viral loads and infectious titres at the apical pole of HAE and in hamster lungs, and MOV trough concentration in plasma and lungs. To explore the mode of action of the MOV, the entire genomes of the collected viruses were deep-sequenced. MOV effectively reduced viral titres in HAE and in the lungs of treated animals. Early treatment after infection was a key factor in efficacy, probably associated with high lung concentrations of MOV, suggesting good accumulation in the lung. MOV induced genomic alteration in viral genomes with an increase in the number of minority variants, and predominant G to A transitions. The observed reduction in viral replication and its mechanism of action leading to lethal mutagenesis, supported by clinical trials showing antiviral action in humans, provide a convincing basis for further research as an additional means in the fight against COVID-19 and other RNA viruses.

19.
Nat Commun ; 15(1): 8667, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384752

RESUMEN

Dengue fever is the most important arbovirosis for public health, with more than 5 million cases worldwide in 2023. Mosnodenvir is the first anti-dengue compound with very high preclinical pan-serotype activity, currently undergoing phase 2 clinical evaluation. Here, by analyzing dengue virus (DENV) genomes from the 2023-2024 epidemic in the French Caribbean Islands, we show that they all exhibit mutation NS4B:V91A, previously associated with a marked decrease in sensitivity to mosnodenvir in vitro. Using antiviral activity tests on four clinical and reverse-genetic strains, we confirm a marked decrease in mosnodenvir sensitivity for DENV-2 ( > 1000 fold). Finally, combining phylogenetic analysis and experimental testing for resistance, we find that virus lineages with low sensitivity to mosnodenvir due to the V91A mutation likely emerged multiple times over the last 30 years in DENV-2 and DENV-3. These results call for increased genomic surveillance, in particular to track lineages with resistance mutations. These efforts should allow to better assess the activity profile of DENV treatments in development against circulating strains.


Asunto(s)
Antivirales , Virus del Dengue , Dengue , Farmacorresistencia Viral , Genoma Viral , Mutación , Filogenia , Virus del Dengue/genética , Virus del Dengue/efectos de los fármacos , Dengue/virología , Dengue/epidemiología , Humanos , Genoma Viral/genética , Farmacorresistencia Viral/genética , Antivirales/farmacología , Genómica/métodos , Epidemias , Proteínas no Estructurales Virales/genética , Animales
20.
Antiviral Res ; 222: 105814, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38272321

RESUMEN

Since the start of the SARS-CoV-2 pandemic, the search for antiviral therapies has been at the forefront of medical research. To date, the 3CLpro inhibitor nirmatrelvir (Paxlovid®) has shown the best results in clinical trials and the greatest robustness against variants. A second SARS-CoV-2 protease inhibitor, ensitrelvir (Xocova®), has been developed. Ensitrelvir, currently in Phase 3, was approved in Japan under the emergency regulatory approval procedure in November 2022, and is available since March 31, 2023. One of the limitations for the use of antiviral monotherapies is the emergence of resistance mutations. Here, we experimentally generated mutants resistant to nirmatrelvir and ensitrelvir in vitro following repeating passages of SARS-CoV-2 in the presence of both antivirals. For both molecules, we demonstrated a loss of sensitivity for resistance mutants in vitro. Using a Syrian golden hamster infection model, we showed that the ensitrelvir M49L mutation, in the multi-passage strain, confers a high level of in vivo resistance. Finally, we identified a recent increase in the prevalence of M49L-carrying sequences, which appears to be associated with multiple repeated emergence events in Japan and may be related to the use of Xocova® in the country since November 2022. These results highlight the strategic importance of genetic monitoring of circulating SARS-CoV-2 strains to ensure that treatments administered retain their full effectiveness.


Asunto(s)
Antiinfecciosos , COVID-19 , Animales , Cricetinae , Inhibidores de Proteasas/farmacología , SARS-CoV-2/genética , Inhibidores Enzimáticos , Antivirales/farmacología , Mesocricetus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA