Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Cell ; 36(1): 85-111, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37683092

RESUMEN

Long noncoding RNAs (lncRNAs) are understudied and underannotated in plants. In mammals, lncRNA loci are nearly as ubiquitous as protein-coding genes, and their expression is highly variable between individuals of the same species. Using Arabidopsis thaliana as a model, we aimed to elucidate the true scope of lncRNA transcription across plants from different regions and study its natural variation. We used transcriptome deep sequencing data sets spanning hundreds of natural accessions and several developmental stages to create a population-wide annotation of lncRNAs, revealing thousands of previously unannotated lncRNA loci. While lncRNA transcription is ubiquitous in the genome, most loci appear to be actively silenced and their expression is extremely variable between natural accessions. This high expression variability is largely caused by the high variability of repressive chromatin levels at lncRNA loci. High variability was particularly common for intergenic lncRNAs (lincRNAs), where pieces of transposable elements (TEs) present in 50% of these lincRNA loci are associated with increased silencing and variation, and such lncRNAs tend to be targeted by the TE silencing machinery. We created a population-wide lncRNA annotation in Arabidopsis and improve our understanding of plant lncRNA genome biology, raising fundamental questions about what causes transcription and silencing across the genome.


Asunto(s)
Arabidopsis , ARN Largo no Codificante , Humanos , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Elementos Transponibles de ADN/genética , Transcriptoma/genética , Genoma de Planta/genética , Mamíferos/genética , Mamíferos/metabolismo
2.
PLoS Genet ; 19(5): e1010728, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141384

RESUMEN

Gene-body methylation (gbM) refers to sparse CG methylation of coding regions, which is especially prominent in evolutionarily conserved house-keeping genes. It is found in both plants and animals, but is directly and stably (epigenetically) inherited over multiple generations in the former. Studies in Arabidopsis thaliana have demonstrated that plants originating from different parts of the world exhibit genome-wide differences in gbM, which could reflect direct selection on gbM, but which could also reflect an epigenetic memory of ancestral genetic and/or environmental factors. Here we look for evidence of such factors in F2 plants resulting from a cross between a southern Swedish line with low gbM and a northern Swedish line with high gbM, grown at two different temperatures. Using bisulfite-sequencing data with nucleotide-level resolution on hundreds of individuals, we confirm that CG sites are either methylated (nearly 100% methylation across sampled cells) or unmethylated (approximately 0% methylation across sampled cells), and show that the higher level of gbM in the northern line is due to more sites being methylated. Furthermore, methylation variants almost always show Mendelian segregation, consistent with their being directly and stably inherited through meiosis. To explore how the differences between the parental lines could have arisen, we focused on somatic deviations from the inherited state, distinguishing between gains (relative to the inherited 0% methylation) and losses (relative to the inherited 100% methylation) at each site in the F2 generation. We demonstrate that deviations predominantly affect sites that differ between the parental lines, consistent with these sites being more mutable. Gains and losses behave very differently in terms of the genomic distribution, and are influenced by the local chromatin state. We find clear evidence for different trans-acting genetic polymorphism affecting gains and losses, with those affecting gains showing strong environmental interactions (G×E). Direct effects of the environment were minimal. In conclusion, we show that genetic and environmental factors can change gbM at a cellular level, and hypothesize that these factors can also lead to transgenerational differences between individuals via the inclusion of such changes in the zygote. If true, this could explain genographic pattern of gbM with selection, and would cast doubt on estimates of epimutation rates from inbred lines in constant environments.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Metilación de ADN/genética , Epigénesis Genética , Genes de Plantas , Genómica/métodos
3.
EMBO J ; 39(20): e103667, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32815560

RESUMEN

In plants, aerial organs originate continuously from stem cells in the center of the shoot apical meristem. Descendants of stem cells in the subepidermal layer are progenitors of germ cells, giving rise to male and female gametes. In these cells, mutations, including insertions of transposable elements or viruses, must be avoided to preserve genome integrity across generations. To investigate the molecular characteristics of stem cells in Arabidopsis, we isolated their nuclei and analyzed stage-specific gene expression and DNA methylation in plants of different ages. Stem cell expression signatures are largely defined by developmental stage but include a core set of stem cell-specific genes, among which are genes implicated in epigenetic silencing. Transiently increased expression of transposable elements in meristems prior to flower induction correlates with increasing CHG methylation during development and decreased CHH methylation, before stem cells enter the reproductive lineage. These results suggest that epigenetic reprogramming may occur at an early stage in this lineage and could contribute to genome protection in stem cells during germline development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Elementos Transponibles de ADN/genética , Brotes de la Planta/metabolismo , Células Madre/metabolismo , Células Madre Germinales Adultas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Epigénesis Genética , Epigenómica , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Silenciador del Gen , Estudio de Asociación del Genoma Completo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Análisis de Componente Principal , RNA-Seq
4.
BMC Genomics ; 19(1): 156, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29466945

RESUMEN

BACKGROUND: The repetitive content of the genome, once considered to be "junk DNA", is in fact an essential component of genomic architecture and evolution. In this study, we used the genomes of three varieties of Cannabis sativa, three varieties of Humulus lupulus and one genotype of Morus notabilis to explore their repetitive content using a graph-based clustering method, designed to explore and compare repeat content in genomes that have not been fully assembled. RESULTS: The repetitive content in the C. sativa genome is mainly composed of the retrotransposons LTR/Copia and LTR/Gypsy (14% and 14.8%, respectively), ribosomal DNA (2%), and low-complexity sequences (29%). We observed a recent copy number expansion in some transposable element families. Simple repeats and low complexity regions of the genome show higher intra and inter species variation. CONCLUSIONS: As with other sequenced genomes, the repetitive content of C. sativa's genome exhibits a wide range of evolutionary patterns. Some repeat types have patterns of diversity consistent with expansions followed by losses in copy number, while others may have expanded more slowly and reached a steady state. Still, other repetitive sequences, particularly ribosomal DNA (rDNA), show signs of concerted evolution playing a major role in homogenizing sequence variation.


Asunto(s)
Cannabis/genética , Evolución Molecular , Variación Genética , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN/métodos , ADN de Plantas , ADN Ribosómico , Humulus/genética , Morus/genética , Retroelementos
5.
BMC Genomics ; 18(1): 653, 2017 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-28830347

RESUMEN

BACKGROUND: Allopolyploids contain genomes composed of more than two complete sets of chromosomes that originate from at least two species. Allopolyploidy has been suggested as an important evolutionary mechanism that can lead to instant speciation. Arabidopsis suecica is a relatively recent allopolyploid species, suggesting that its natural accessions might be genetically very similar to each other. Nonetheless, subtle phenotypic differences have been described between different geographic accessions of A. suecica grown in a common garden. RESULTS: To determine the degree of genomic similarity between different populations of A. suecica, we obtained transcriptomic sequence, quantified SNP variation within the gene space, and analyzed gene expression levels genome-wide from leaf material grown in controlled lab conditions. Despite their origin from the same progenitor species, the two accessions of A. suecica used in our study show genomic and transcriptomic variation. We report significant gene expression differences between the accessions, mostly in genes with stress-related functions. Among the differentially expressed genes, there are a surprising number of homoeologs coordinately regulated between sister accessions. CONCLUSIONS: Many of these homoeologous genes and other differentially expressed genes affect transpiration and stomatal regulation, suggesting that they might be involved in the establishment of the phenotypic differences between the two accessions.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Genes de Plantas/genética , Variación Genética , Poliploidía , Estrés Fisiológico/genética , Ontología de Genes , Genómica
6.
Genome Biol ; 24(1): 44, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36895055

RESUMEN

BACKGROUND: It is apparent that genomes harbor much structural variation that is largely undetected for technical reasons. Such variation can cause artifacts when short-read sequencing data are mapped to a reference genome. Spurious SNPs may result from mapping of reads to unrecognized duplicated regions. Calling SNP using the raw reads of the 1001 Arabidopsis Genomes Project we identified 3.3 million (44%) heterozygous SNPs. Given that Arabidopsis thaliana (A. thaliana) is highly selfing, and that extensively heterozygous individuals have been removed, we hypothesize that these SNPs reflected cryptic copy number variation. RESULTS: The heterozygosity we observe consists of particular SNPs being heterozygous across individuals in a manner that strongly suggests it reflects shared segregating duplications rather than random tracts of residual heterozygosity due to occasional outcrossing. Focusing on such pseudo-heterozygosity in annotated genes, we use genome-wide association to map the position of the duplicates. We identify 2500 putatively duplicated genes and validate them using de novo genome assemblies from six lines. Specific examples included an annotated gene and nearby transposon that transpose together. We also demonstrate that cryptic structural variation produces highly inaccurate estimates of DNA methylation polymorphism. CONCLUSIONS: Our study confirms that most heterozygous SNP calls in A. thaliana are artifacts and suggest that great caution is needed when analyzing SNP data from short-read sequencing. The finding that 10% of annotated genes exhibit copy-number variation, and the realization that neither gene- nor transposon-annotation necessarily tells us what is actually mobile in the genome suggests that future analyses based on independently assembled genomes will be very informative.


Asunto(s)
Arabidopsis , Humanos , Arabidopsis/genética , Análisis de Secuencia de ADN , Estudio de Asociación del Genoma Completo , Variaciones en el Número de Copia de ADN , Genoma de Planta , Polimorfismo de Nucleótido Simple
7.
Quant Plant Biol ; 3: e19, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37077980

RESUMEN

Whole-genome bisulfite sequencing (WGBS) is the standard method for profiling DNA methylation at single-nucleotide resolution. Different tools have been developed to extract differentially methylated regions (DMRs), often built upon assumptions from mammalian data. Here, we present MethylScore, a pipeline to analyse WGBS data and to account for the substantially more complex and variable nature of plant DNA methylation. MethylScore uses an unsupervised machine learning approach to segment the genome by classification into states of high and low methylation. It processes data from genomic alignments to DMR output and is designed to be usable by novice and expert users alike. We show how MethylScore can identify DMRs from hundreds of samples and how its data-driven approach can stratify associated samples without prior information. We identify DMRs in the A. thaliana 1,001 Genomes dataset to unveil known and unknown genotype-epigenotype associations .

8.
Front Plant Sci ; 12: 668315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594346

RESUMEN

The National Institute on Drug Abuse (NIDA) is the sole producer of Cannabis for research purposes in the United States, including medical investigation. Previous research established that cannabinoid profiles in the NIDA varieties lacked diversity and potency relative to the Cannabis produced commercially. Additionally, microsatellite marker analyses have established that the NIDA varieties are genetically divergent form varieties produced in the private legal market. Here, we analyzed the genomes of multiple Cannabis varieties from diverse lineages including two produced by NIDA, and we provide further support that NIDA's varieties differ from widely available medical, recreational, or industrial Cannabis. Furthermore, our results suggest that NIDA's varieties lack diversity in the single-copy portion of the genome, the maternally inherited genomes, the cannabinoid genes, and in the repetitive content of the genome. Therefore, results based on NIDA's varieties are not generalizable regarding the effects of Cannabis after consumption. For medical research to be relevant, material that is more widely used would have to be studied. Clearly, having research to date dominated by a single, non-representative source of Cannabis has hindered scientific investigation.

9.
Nat Cell Biol ; 23(4): 391-400, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33833428

RESUMEN

Mobile transposable elements (TEs) not only participate in genome evolution but also threaten genome integrity. In healthy cells, TEs that encode all of the components that are necessary for their mobility are specifically silenced, yet the precise mechanism remains unknown. Here, we characterize the mechanism used by a conserved class of chromatin remodelers that prevent TE mobility. In the Arabidopsis chromatin remodeler DECREASE IN DNA METHYLATION 1 (DDM1), we identify two conserved binding domains for the histone variant H2A.W, which marks plant heterochromatin. DDM1 is necessary and sufficient for the deposition of H2A.W onto potentially mobile TEs, yet does not act on TE fragments or host protein-coding genes. DDM1-mediated H2A.W deposition changes the properties of chromatin, resulting in the silencing of TEs and, therefore, prevents their mobility. This distinct mechanism provides insights into the interplay between TEs and their host in the contexts of evolution and disease, and potentiates innovative strategies for targeted gene silencing.


Asunto(s)
Proteínas de Arabidopsis/genética , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/genética , Evolución Molecular , Histonas/genética , Factores de Transcripción/genética , Arabidopsis/genética , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen , Genoma de Planta/genética , Heterocromatina/genética
10.
Sci Data ; 4: 170184, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29257129

RESUMEN

Large-scale studies such as the Arabidopsis thaliana '1,001 Genomes' Project require routine genotyping of stocks to avoid sample contamination. To genotype samples efficiently and economically, sequencing must be inexpensive and data processing simple. Here we present SNPmatch, a tool that identifies strains (or inbred lines, or accessions) by matching them to a SNP database. We tested the tool by performing low-coverage resequencing of over 2,000 strains from our lab seed stock collection. SNPmatch correctly genotyped samples from 1-fold coverage sequencing data, and could also identify the parents of F1 or F2 individuals. SNPmatch can be run either on the command line or through AraGeno (https://arageno.gmi.oeaw.ac.at), a web interface that permits sample genotyping from a user-uploaded VCF or BED file.


Asunto(s)
Arabidopsis , Técnicas de Genotipaje , Arabidopsis/clasificación , Arabidopsis/genética , Genoma de Planta , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA