Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Intervalo de año de publicación
1.
Genet Mol Biol ; 46(3 Suppl 1): e20230143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38569056

RESUMEN

Galileo is a transposon notoriously involved with inversions in Drosophila buzzatii by ectopic recombination. Although widespread in Drosophila, little is known about this transposon in other lineages of Drosophilidae. Here, the abundance of the canonical Galileo and its evolutionary history in Drosophilidae genomes was estimated and reconstructed across genera within its two subfamilies. Sequences of this transposon were masked in these genomes and their transposase sequences were recovered using BLASTn. Phylogenetic analyses were employed to reconstruct their evolutionary history and compare it to that of host genomes. Galileo was found in nearly all 163 species, however, only 37 harbored nearly complete transposase sequences. In the remaining, Galileo was found highly fragmented. Copies from related species were clustered, however horizontal transfer events were detected between the melanogaster and montium groups of Drosophila, and between the latter and the Lordiphosa genus. The similarity of sequences found in the virilis and willistoni groups of Drosophila was found to be a consequence of lineage sorting. Therefore, the evolution of Galileo is primarily marked by vertical transmission and long-term inactivation, mainly through the deletion of open reading frames. The latter has the potential to lead copies of this transposon to become miniature inverted-repeat transposable elements.

2.
Med Vet Entomol ; 37(2): 316-329, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36543747

RESUMEN

Triatoma maculata (Hemiptera, Reduviidae, Triatominae) occurs across dry-to-semiarid ecoregions of northern South America, where it transmits Trypanosoma cruzi, causative agent of Chagas disease. Using 207 field-caught specimens from throughout the species' range, mitochondrial(mt) DNA sequence data, and cytogenetics, we investigated inter-population genetic diversity and the phylogenetic affinities of T. maculata. Mitochondrial DNA sequence analyses (cytb and nd4) disclosed a monophyletic T. maculata clade encompassing three distinct geographic groups: Roraima formation (Guiana shield), Orinoco basin, and Magdalena basin (trans-Andean). Between-group cytb distances (11.0-12.8%) were larger than the ~7.5% expected for sister Triatoma species; the most recent common ancestor of these T. maculata groups may date back to the late Miocene. C-heterochromatin distribution and the sex-chromosome location of 45S ribosomal DNA clusters both distinguished Roraima bugs from Orinoco and Magdalena specimens. Cytb genealogies reinforced that T. maculata is not sister to Triatoma pseudomaculata and probably represents an early (middle-late Miocene) offshoot of the 'South American Triatomini lineage'. In sum, we report extensive genetic diversity and deep phylogeographic structuring in T. maculata, suggesting that it may consist of a complex of at least three sibling taxa. These findings have implications for the systematics, population biology, and perhaps medical relevance of T. maculata sensu lato.


Asunto(s)
Enfermedad de Chagas , Triatoma , Trypanosoma cruzi , Animales , Triatoma/genética , Filogenia , Enfermedad de Chagas/veterinaria , Trypanosoma cruzi/genética , ADN Mitocondrial/genética , Análisis Citogenético/veterinaria
3.
Mem Inst Oswaldo Cruz ; 116: e210259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35137904

RESUMEN

BACKGROUND: Panstrongylus rufotuberculatus (Hemiptera-Reduviidae) is a triatomine species with a wide geographic distribution and a broad phenotypic variability. In some countries, this species is found infesting and colonising domiciliary ecotopes representing an epidemiological risk factor as a vector of Trypanosoma cruzi, etiological agent of Chagas disease. In spite of this, little is known about P. rufotuberculatus genetic diversity. METHODS: Cytogenetic studies and DNA sequence analyses of one nuclear (ITS-2) and two mitochondrial DNA sequences (cyt b and coI) were carried out in P. rufotuberculatus individuals collected in Bolivia, Colombia, Ecuador and Mexico. Moreover, a geometric morphometrics study was applied to Bolivian, Colombian, Ecuadorian and French Guiana samples. OBJECTIVES: To explore the genetic and phenetic diversity of P. rufotuberculatus from different countries, combining chromosomal studies, DNA sequence analyses and geometric morphometric comparisons. FINDINGS: We found two chromosomal groups differentiated by the number of X chromosomes and the chromosomal position of the ribosomal DNA clusters. In concordance, two main morphometric profiles were detected, clearly separating the Bolivian sample from the other ones. Phylogenetic DNA analyses showed that both chromosomal groups were closely related to each other and clearly separated from the remaining Panstrongylus species. High nucleotide divergence of cyt b and coI fragments were observed among P. rufotuberculatus samples from Bolivia, Colombia, Ecuador and Mexico (Kimura 2-parameter distances higher than 9%). MAIN CONCLUSIONS: Chromosomal and molecular analyses supported that the two chromosomal groups could represent different closely related species. We propose that Bolivian individuals constitute a new Panstrongylus species, being necessary a detailed morphological study for its formal description. The clear morphometric discrimination based on the wing venation pattern suggests such morphological description might be conclusive.


Asunto(s)
Enfermedad de Chagas , Heterópteros , Panstrongylus , Triatoma , Animales , Humanos , Insectos Vectores/genética , Panstrongylus/genética , Filogenia
4.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34205189

RESUMEN

The triatomine Rhodnius prolixus is the main vector of Chagas disease in countries such as Colombia and Venezuela, and the first kissing bug whose genome has been sequenced and assembled. In the repetitive genome fraction (repeatome) of this species, the transposable elements represented 19% of R. prolixus genome, being mostly DNA transposon (Class II elements). However, scarce information has been published regarding another important repeated DNA fraction, the satellite DNA (satDNA), or satellitome. Here, we offer, for the first time, extended data about satellite DNA families in the R. prolixus genome using bioinformatics pipeline based on low-coverage sequencing data. The satellitome of R. prolixus represents 8% of the total genome and it is composed by 39 satDNA families, including four satDNA families that are shared with Triatoma infestans, as well as telomeric (TTAGG)n and (GATA)n repeats, also present in the T. infestans genome. Only three of them exceed 1% of the genome. Chromosomal hybridization with these satDNA probes showed dispersed signals over the euchromatin of all chromosomes, both in autosomes and sex chromosomes. Moreover, clustering analysis revealed that most abundant satDNA families configured several superclusters, indicating that R. prolixus satellitome is complex and that the four most abundant satDNA families are composed by different subfamilies. Additionally, transcription of satDNA families was analyzed in different tissues, showing that 33 out of 39 satDNA families are transcribed in four different patterns of expression across samples.


Asunto(s)
Enfermedad de Chagas/genética , Elementos Transponibles de ADN/genética , ADN Satélite/genética , Rhodnius/genética , Animales , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/transmisión , Biología Computacional , Humanos , Anotación de Secuencia Molecular , Rhodnius/parasitología , Rhodnius/patogenicidad , Triatoma/genética , Triatoma/parasitología , Secuenciación Completa del Genoma
5.
Int J Mol Sci ; 19(5)2018 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-29695139

RESUMEN

Chagas disease or American trypanosomiasis affects six to seven million people worldwide, mostly in Latin America. This disease is transmitted by hematophagous insects known as "kissing bugs" (Hemiptera, Triatominae), with Triatoma infestans and Rhodnius prolixus being the two most important vector species. Despite the fact that both species present the same diploid chromosome number (2n = 22), they have remarkable differences in their total DNA content, chromosome structure and genome organization. Variations in the DNA genome size are expected to be due to differences in the amount of repetitive DNA sequences. The T. infestans genome-wide analysis revealed the existence of 42 satellite DNA families. BLAST searches of these sequences against the R. prolixus genome assembly revealed that only four of these satellite DNA families are shared between both species, suggesting a great differentiation between the Triatoma and Rhodnius genomes. Fluorescence in situ hybridization (FISH) location of these repetitive DNAs in both species showed that they are dispersed on the euchromatic regions of all autosomes and the X chromosome. Regarding the Y chromosome, these common satellite DNAs are absent in T. infestans but they are present in the R. prolixus Y chromosome. These results support a different origin and/or evolution in the Y chromosome of both species.


Asunto(s)
Insectos Vectores/genética , Secuencias Repetitivas de Ácidos Nucleicos , Rhodnius/genética , Triatoma/genética , Animales , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/transmisión , Bandeo Cromosómico , ADN Satélite , Evolución Molecular , Genoma de los Insectos , Genómica/métodos , Hibridación Fluorescente in Situ , Insectos Vectores/parasitología , Rhodnius/parasitología , Triatoma/parasitología , Trypanosoma cruzi
6.
Mem Inst Oswaldo Cruz ; 111(10): 614-624, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27759763

RESUMEN

The subfamily Triatominae (Hemiptera, Reduviidae) includes 150 species of blood-sucking insects, vectors of Chagas disease or American trypanosomiasis. Karyotypic information reveals a striking stability in the number of autosomes. However, this group shows substantial variability in genome size, the amount and distribution of C-heterochromatin, and the chromosome positions of 45S rDNA clusters. Here, we analysed the karyotypes of 41 species from six different genera with C-fluorescence banding in order to evaluate the base-pair richness of heterochromatic regions. Our results show a high heterogeneity in the fluorescent staining of the heterochromatin in both autosomes and sex chromosomes, never reported before within an insect subfamily with holocentric chromosomes. This technique allows a clear discrimination of the heterochromatic regions classified as similar by C-banding, constituting a new chromosome marker with taxonomic and evolutionary significance. The diverse fluorescent patterns are likely due to the amplification of different repeated sequences, reflecting an unusual dynamic rearrangement in the genomes of this subfamily. Further, we discuss the evolution of these repeated sequences in both autosomes and sex chromosomes in species of Triatominae.


Asunto(s)
Cromosomas de Insectos/genética , Heterocromatina/genética , Insectos Vectores/genética , Triatominae/genética , Animales , Evolución Biológica , Enfermedad de Chagas/transmisión , ADN Ribosómico/genética , Cariotipificación , ARN Ribosómico/genética , Triatominae/clasificación
7.
Genetica ; 142(5): 397-403, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25134938

RESUMEN

Comparative genomics in Drosophila began in 1940, when Muller stated that the ancestral haploid karyotype of this genus is constituted by five acrocentric chromosomes and one dot chromosome, named A to F elements. In some species of the willistoni group such as Drosophila willistoni and D. insularis, the F element, instead of a dot chromosome, has been incorporated into the E element, forming chromosome III (E + F fusion). The aim of this study was to investigate the scope of the E + F fusion in the willistoni group, evaluating six other species. Fluorescent in situ hybridization was used to locate two genes of the F element previously studied-cubitus interruptus (ci) and eyeless (ey)-in species of the willistoni and bocainensis subgroups. Moreover, polytene chromosome photomaps corresponding to the F element (basal portion of chromosome III) were constructed for each species studied. In D. willistoni, D. paulistorum and D. equinoxialis, the ci gene was located in subSectction 78B and the ey gene in 78C. In D. tropicalis, ci was located in subSection 76B and ey in 76C. In species of the bocainensis subgroup, ci and ey were localized, respectively, at subsections 76B and 76C in D. nebulosa and D. capricorni, and 76A and 76C in D. fumipennis. Despite the differences in the subsection numbers, all species showed the same position for ci and ey. The results confirm the synteny of E + F fusion in willistoni and bocainensis subgroups, and allow estimating the occurrence of this event at 15 Mya, at least.


Asunto(s)
Mapeo Cromosómico/métodos , Cromosomas de Insectos/genética , Drosophila/genética , Genes de Insecto/genética , Animales , Proteínas de Unión al ADN/genética , Drosophila/clasificación , Proteínas de Drosophila/genética , Evolución Molecular , Hibridación Fluorescente in Situ , Microscopía Fluorescente , Cromosomas Politénicos/genética , Especificidad de la Especie , Sintenía , Factores de Tiempo , Factores de Transcripción/genética
8.
Genet Mol Biol ; 37(2): 375-80, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25071402

RESUMEN

DOMESTIC BUFFALOES ARE DIVIDED INTO TWO GROUP BASED ON CYTOGENETIC CHARACTERISTICS AND HABITATS: the "river buffaloes" with 2n = 50 and the "swamp buffaloes", 2n = 48. Nevertheless, their hybrids are viable, fertile and identified by a 2n = 49. In order to have a better characterization of these different cytotypes of buffaloes, and considering that NOR-bearing chromosomes are involved in the rearrangements responsible for the karyotypic differences, we applied silver staining (Ag-NOR) and performed fluorescent in situ hybridization (FISH) experiments using 18S rDNA as probe. Metaphases were obtained through blood lymphocyte culture of 21 individuals, including river, swamp and hybrid cytotypes. Ag-NOR staining revealed active NORs on six chromosome pairs (3p, 4p, 6, 21, 23, 24) in the river buffaloes, whereas the swamp buffaloes presented only five NOR-bearing pairs (4p, 6, 20, 22, 23). The F1 cross-breed had 11 chromosomes with active NORs, indicating expression of both parental chromosomes. FISH analysis confirmed the numerical divergence identified with Ag-NOR. This result is explained by the loss of the NOR located on chromosome 4p in the river buffalo, which is involved in the tandem fusion with chromosome 9 in this subspecies. A comparison with the ancestral cattle karyotype suggests that the NOR found on the 3p of the river buffalo may have originated from a duplication of ribosomal genes, resulting in the formation of new NOR sites in this subspecies.

9.
Sci Rep ; 14(1): 5578, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38448494

RESUMEN

Trypanosoma cruzi causes Chagas disease and has a unique extranuclear genome enclosed in a structure called the kinetoplast, which contains circular genomes known as maxi- and minicircles. While the structure and function of maxicircles are well-understood, many aspects of minicircles remain to be discovered. Here, we performed a high-throughput analysis of the minicirculome (mcDNA) in 50 clones isolated from Colombia's diverse T. cruzi I populations. Results indicate that mcDNA comprises four diverse subpopulations with different structures, lengths, and numbers of interspersed semi-conserved (previously termed ultra-conserved regions mHCV) and hypervariable (mHVPs) regions. Analysis of mcDNA ancestry and inter-clone differentiation indicates the interbreeding of minicircle sequence classes is placed along diverse strains and hosts. These results support evidence of the multiclonal dynamics and random bi-parental segregation. Finally, we disclosed the guide RNA repertoire encoded by mcDNA at a clonal scale, and several attributes of its abundance and function are discussed.


Asunto(s)
Enfermedad de Chagas , Segregación Social , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Mitocondrias
10.
Parasit Vectors ; 17(1): 145, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500121

RESUMEN

BACKGROUND: Triatoma garciabesi, a potential vector of the parasitic protozoan Trypanosoma cruzi, which is the causative agent of Chagas disease, is common in peridomestic and wild environments and found throughout northwestern and central Argentina, western Paraguay and the Bolivian Chaco. Genetic differentiation of a species across its range can help to understand dispersal patterns and connectivity between habitats. Dispersal by flight is considered to be the main active dispersal strategy used by triatomines. In particular, the morphological structure of the hemelytra is associated with their function. The aim of this study was to understand how genetic diversity is structured, how morphological variation of dispersal-related traits varies with genetic diversity and how the morphological characteristics of dispersal-related traits may explain the current distribution of genetic lineages in this species. METHODS: Males from 24 populations of T. garciabesi across its distribution range were examined. The cytochrome c oxidase I gene (coI) was used for genetic diversity analyses. A geometric morphometric method based on landmarks was used for morpho-functional analysis of the hemelytra. Centroid size (CS) and shape of the forewing, and contour of both parts of the forewing, the head and the pronotum were characterised. Length and area of the forewing were measured to estimate the aspect ratio. RESULTS: The morphometric and phylogenetic analysis identified two distinct lineages, namely the Eastern and Western lineages, which coincide with different ecological regions. The Eastern lineage is found exclusively in the eastern region of Argentina (Chaco and Formosa provinces), whereas the Western lineage is prevalent in the rest of the geographical range of the species. CS, shape and aspect ratio of the hemelytra differed between lineages. The stiff portion of the forewing was more developed in the Eastern lineage. The shape of both portions of the hemelytra were significantly different between lineages, and the shape of the head and pronotum differed between lineages. CONCLUSIONS: The results provide preliminary insights into the evolution and diversification of T. garciabesi. Variation in the forewing, pronotum and head is congruent with genetic divergence. Consistent with genetic divergence, morphometry variation was clustered according to lineages, with congruent variation in the size and shape of the forewing, pronotum and head.


Asunto(s)
Enfermedad de Chagas , Triatoma , Masculino , Animales , Filogenia , Insectos Vectores , Variación Genética
11.
Mem Inst Oswaldo Cruz ; 108(3)2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23778665

RESUMEN

In this study, we used fluorescence in situ hybridisation to determine the chromosomal location of 45S rDNA clusters in 10 species of the tribe Rhodniini (Hemiptera: Reduviidae: Triatominae). The results showed striking inter and intraspecific variability, with the location of the rDNA clusters restricted to sex chromosomes with two patterns: either on one (X chromosome) or both sex chromosomes (X and Y chromosomes). This variation occurs within a genus that has an unchanging diploid chromosome number (2n = 22, including 20 autosomes and 2 sex chromosomes) and a similar chromosome size and genomic DNA content, reflecting a genome dynamic not revealed by these chromosome traits. The rDNA variation in closely related species and the intraspecific polymorphism in Rhodnius ecuadoriensis suggested that the chromosomal position of rDNA clusters might be a useful marker to identify recently diverged species or populations. We discuss the ancestral position of ribosomal genes in the tribe Rhodniini and the possible mechanisms involved in the variation of the rDNA clusters, including the loss of rDNA loci on the Y chromosome, transposition and ectopic pairing. The last two processes involve chromosomal exchanges between both sex chromosomes, in contrast to the widely accepted idea that the achiasmatic sex chromosomes of Heteroptera do not interchange sequences.


Asunto(s)
Cromosomas de Insectos/genética , ADN Ribosómico/genética , ARN Ribosómico 5S/genética , Triatominae/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Evolución Biológica , Diploidia , Femenino , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Especificidad de la Especie
12.
Insects ; 14(9)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37754740

RESUMEN

This study focused on analyzing the distribution of microsatellites in holocentric chromosomes of the Triatominae subfamily, insect vectors of Chagas disease. We employed a non-denaturing FISH technique to determine the chromosomal distribution of sixteen microsatellites across twenty-five triatomine species, involving five genera from the two principal tribes: Triatomini and Rhodniini. Three main hybridization patterns were identified: strong signals in specific chromosomal regions, dispersed signals dependent on microsatellite abundance and the absence of signals in certain chromosomal regions or entire chromosomes. Significant variations in hybridization patterns were observed between Rhodniini and Triatomini species. Rhodniini species displayed weak and scattered hybridization signals, indicating a low abundance of microsatellites in their genomes. In contrast, Triatomini species exhibited diverse and abundant hybridization patterns, suggesting that microsatellites are a significant repetitive component in their genomes. One particularly interesting finding was the high abundance of GATA repeats, and to a lesser extent AG repeats, in the Y chromosome of all analyzed Triatomini species. In contrast, the Y chromosome of Rhodniini species did not show enrichment in GATA and AG repeats. This suggests that the richness of GATA repeats on the Y chromosome likely represents an ancestral trait specific to the Triatomini tribe. Furthermore, this information can be used to elucidate the evolutionary relationships between Triatomini and other groups of reduviids, contributing to the understanding of the subfamily's origin. Overall, this study provides a comprehensive understanding of the composition and distribution of microsatellites within Triatominae genomes, shedding light on their significance in the evolutionary processes of these species.

13.
Genes (Basel) ; 14(2)2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36833298

RESUMEN

The genome of Triatoma delpontei Romaña & Abalos 1947 is the largest within Heteroptera, approximately two to three times greater than other evaluated Heteroptera genomes. Here, the repetitive fraction of the genome was determined and compared with its sister species Triatoma infestans Klug 1834, in order to shed light on the karyotypic and genomic evolution of these species. The T. delpontei repeatome analysis showed that the most abundant component in its genome is satellite DNA, which makes up more than half of the genome. The T. delpontei satellitome includes 160 satellite DNA families, most of them also present in T. infestans. In both species, only a few satellite DNA families are overrepresented on the genome. These families are the building blocks of the C-heterochromatic regions. Two of these satellite DNA families that form the heterochromatin are the same in both species. However, there are satellite DNA families highly amplified in the heterochromatin of one species that in the other species are in low abundance and located in the euchromatin. Therefore, the present results depicted the great impact of the satellite DNA sequences in the evolution of Triatominae genomes. Within this scenario, satellitome determination and analysis led to a hypothesis that explains how satDNA sequences have grown on T. delpontei to reach its huge genome size within true bugs.


Asunto(s)
Triatoma , Triatominae , Animales , Triatoma/genética , Triatominae/genética , ADN Satélite , Heterocromatina , Genómica
14.
Zoonoses Public Health ; 70(5): 383-392, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36898974

RESUMEN

In the Americas, the sandfly Lutzomyia longipalpis is the main vector of the parasitic protozoa Leishmania infantum, the etiological agent of visceral leishmaniasis (VL). The Lu. longipalpis species complex is currently discontinuously distributed across the Neotropical region, from Mexico to the north of Argentina and Uruguay. During its continental spreading, it must have adapted to several biomes and temperature amplitudes, when founder events should have contributed to the high genetic divergence and geographical structure currently observed, reinforcing the speciation process. The first report of Lu. longipalpis in Uruguay was in 2010, calling the attention of Public Health authorities. Five years later, the parasite Le. infantum was recorded and in 2015 the first case of VL in canids was reported. Hitherto seven human cases by VL have been reported in Uruguay. Here, we publish the first DNA sequences from the mitochondrial genes ND4 and CYTB of Lu. longipalpis collected in Uruguay, and we used these molecular markers to investigate their genetic variability and population structure. We described four new ND4 haplotypes in a total of 98 (4/98) and one CYTB in a total of 77 (1/77). As expected, we were able to establish that the Lu. longipalpis collected in two localities (i.e. Salto and Bella Unión) from the north of Uruguay are closely related to the populations from neighbouring countries. We also propose that the possible route for the vector arrival to the region may have been through vegetation and forest corridors of the Uruguay River system, as well as it may have benefited from landscape modifications generated by commercial forestation. The ecological-scale processes shaping Lu. longipalpis populations, the identification of genetically homogeneous groups and the gene flow among them must be carefully investigated by using highly sensible molecular markers (i.e. genome wide SNPs) since it will help to the understanding of VL transmission and contribute to the planification of public policies on its control.


Asunto(s)
Leishmania infantum , Leishmaniasis Visceral , Psychodidae , Animales , Humanos , Brasil/epidemiología , Insectos Vectores/genética , Insectos Vectores/parasitología , Leishmania infantum/genética , Leishmaniasis Visceral/parasitología , Leishmaniasis Visceral/veterinaria , Psychodidae/parasitología , Uruguay/epidemiología
15.
Zookeys ; 1104: 203-225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761929

RESUMEN

Panstrongylusnoireaui sp. nov. from Bolivia is described based on male and female specimens. Although morphologically almost indistinguishable from Panstrongylusrufotuberculatus (Champion, 1899), the new species shows remarkable chromosome and molecular features, which are very distinctive among all others Panstrongylus species. The new species is also separated by some characteristics of the processes of the endosoma of the male genitalia. An updated key for species of Panstrongylus is provided.

16.
PLoS Negl Trop Dis ; 15(8): e0009719, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34437557

RESUMEN

We sequenced maxicircles from T. cruzi strains representative of the species evolutionary diversity by using long-read sequencing, which allowed us to uncollapse their repetitive regions, finding that their real lengths range from 35 to 50 kb. T. cruzi maxicircles have a common architecture composed of four regions: coding region (CR), AT-rich region, short (SR) and long repeats (LR). Distribution of genes, both in order and in strand orientation are conserved, being the main differences the presence of deletions affecting genes coding for NADH dehydrogenase subunits, reinforcing biochemical findings that indicate that complex I is not functional in T. cruzi. Moreover, the presence of complete minicircles into maxicircles of some strains lead us to think about the origin of minicircles. Finally, a careful phylogenetic analysis was conducted using coding regions of maxicircles from up to 29 strains, and 1108 single copy nuclear genes from all of the DTUs, clearly establishing that taxonomically T. cruzi is a complex of species composed by group 1 that contains clades A (TcI), B (TcIII) and D (TcIV), and group 2 (1 and 2 do not coincide with groups I and II described decades ago) containing clade C (TcII), being all hybrid strains of the BC type. Three variants of maxicircles exist in T. cruzi: a, b and c, in correspondence with clades A, B, and C from mitochondrial phylogenies. While A and C carry maxicircles a and c respectively, both clades B and D carry b maxicircle variant; hybrid strains also carry the b- variant. We then propose a new nomenclature that is self-descriptive and makes use of both the phylogenetic relationships and the maxicircle variants present in T. cruzi.


Asunto(s)
Evolución Molecular , Trypanosoma cruzi/genética , Enfermedad de Chagas/parasitología , Variación Genética , Genoma de Protozoos , Humanos , NADH Deshidrogenasa/genética , Filogenia , Proteínas Protozoarias/genética , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/aislamiento & purificación
17.
Parasit Vectors ; 13(1): 226, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375868

RESUMEN

BACKGROUND: Chagas disease is a parasitic infection transmitted by "kissing bugs" (Hemiptera: Reduviidae: Triatominae) that has a huge economic impact in Latin American countries. The vector species with the upmost epidemiological importance in Ecuador are Rhodnius ecuadoriensis (Lent & Leon, 1958) and Triatoma dimidiata (Latreille, 1811). However, other species such as Panstrongylus howardi (Neiva, 1911) and Panstrongylus chinai (Del Ponte, 1929) act as secondary vectors due to their growing adaptation to domestic structures and their ability to transmit the parasite to humans. The latter two taxa are distributed in two different regions, they are allopatric and differ mainly by their general color. Their relative morphological similarity led some authors to suspect that P. chinai is a melanic form of P. howardi. METHODS: The present study explored this question using different approaches: antennal phenotype; geometric morphometrics of heads, wings and eggs; cytogenetics; molecular genetics; experimental crosses; and ecological niche modeling. RESULTS: The antennal morphology, geometric morphometrics of head and wing shape and cytogenetic analysis were unable to show distinct differences between the two taxa. However, geometric morphometrics of the eggs, molecular genetics, ecological niche modeling and experimental crosses including chromosomal analyses of the F1 hybrids, in addition to their coloration and current distribution support the hypothesis that P. chinai and P. howardi are separate species. CONCLUSIONS: Based on the evidence provided here, P. howardi and P. chinai should not be synonymized. They represent two valid, closely related species.


Asunto(s)
Panstrongylus/clasificación , Animales , Enfermedad de Chagas/transmisión , Citogenética , Ecuador , Insectos Vectores/clasificación , Insectos Vectores/parasitología , Panstrongylus/parasitología , Patología Molecular , Fenotipo
18.
Genome Biol Evol ; 11(2): 546-551, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30715360

RESUMEN

The major human pathogens Trypanosoma cruzi, Trypanosoma brucei, and Leishmania major are collectively known as the Tritryps. The initial comparative analysis of their genomes has uncovered that Tritryps share a great number of genes, but repetitive DNA seems to be extremely variable between them. However, the in-depth characterization of repetitive DNA in these pathogens has been in part neglected, mainly due to the well-known technical challenges of studying repetitive sequences from de novo assemblies using short reads. Here, we compared the repetitive DNA repertories between the Tritryps genomes using genome-wide, low-coverage Illumina sequencing coupled to RepeatExplorer analysis. Our work demonstrates that this extensively implemented approach for studying higher eukaryote repeatomes is also useful for protozoan parasites like trypanosomatids, as we recovered previously observed differences in the presence and amount of repetitive DNA families. Additionally, our estimations of repetitive DNA abundance were comparable to those obtained from enhanced-quality assemblies using longer reads. Importantly, our methodology allowed us to describe a previously undescribed transposable element in Leishmania major (TATE element), highlighting its potential to accurately recover distinctive features from poorly characterized repeatomes. Together, our results support the application of this low-cost, low-coverage sequencing approach for the extensive characterization of repetitive DNA evolutionary dynamics in trypanosomatid and other protozoan genomes.


Asunto(s)
Evolución Molecular , Leishmania major/genética , Secuencias Repetitivas de Ácidos Nucleicos , Trypanosoma cruzi/genética
19.
Genome Biol Evol ; 11(7): 1952-1957, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31218350

RESUMEN

Chagas disease was described by Carlos Chagas, who first identified the parasite Trypanosoma cruzi from a 2-year-old girl called Berenice. Many T. cruzi sequencing projects based on short reads have demonstrated that genome assembly and downstream comparative analyses are extremely challenging in this species, given that half of its genome is composed of repetitive sequences. Here, we report de novo assemblies, annotation, and comparative analyses of the Berenice strain using a combination of Illumina short reads and MinION long reads. Our work demonstrates that Nanopore sequencing improves T. cruzi assembly contiguity and increases the assembly size in ∼16 Mb. Specifically, we found that assembly improvement also refines the completeness of coding regions for both single-copy genes and repetitive transposable elements. Beyond its historical and epidemiological importance, Berenice constitutes a fundamental resource because it now constitutes a high-quality assembly available for TcII (clade C), a prevalent lineage causing human infections in South America. The availability of Berenice genome expands the known genetic diversity of these parasites and reinforces the idea that T. cruzi is intraspecifically divided in three main clades. Finally, this work represents the introduction of Nanopore technology to resolve complex protozoan genomes, supporting its subsequent application for improving trypanosomatid and other highly repetitive genomes.


Asunto(s)
Enfermedad de Chagas/parasitología , Trypanosoma cruzi/genética , Enfermedad de Chagas/genética , Genoma de Protozoos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nanoporos/métodos , Nanoporos , Filogenia , Análisis de Secuencia de ADN
20.
Parasit Vectors ; 12(1): 585, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31842951

RESUMEN

BACKGROUND: Triatoma rubrofasciata is the only kissing bug species distributed globally. In the Americas, this species transmits the parasite Trypanosoma cruzi, responsible for Chagas disease. The presence of T. rubrofasciata in several Asian countries has greatly increased recently. In Vietnam, it is found in large numbers, closely associated with human environments. Although T. rubrofasciata from Asia is not infected with Tryp. cruzi, it carries other parasites such as Trypanosoma lewisi and Trypanosoma conorhini. Reports of bites by T. rubrofasciata have increased significantly in several places of Vietnam, becoming a public health problem as it produces severe anaphylactic reactions. METHODS: Specimens of T. rubrofasciata were collected from seven provinces in central Vietnam. We analyzed different biological attributes (life-cycle, starvation resistance, feeding and reproductive capacities) and genetic characteristics (chromosomes and DNA sequences) of T. rubrofasciata from Vietnam and compared them with Brazilian specimens. Natural infection with Tryp. conorhini and Tryp. lewisi were analyzed in a sample of 100 collected insects. RESULTS: Species identification of T. rubrofasciata from central Vietnam was corroborated by genetic markers. Cytogenetic analyses showed that T. rubrofasciata from central Vietnam share the same chromosomal characteristics with individuals from Brazil and Hanoi. DNA sequence analyses of a mitochondrial cytochrome b gene fragment showed little variation between Old and New World specimens. Our study sample, compared with Brazilian individuals, showed a higher survival capacity revealed by a higher hatching rate (98% compared with 80.5%), a larger amount of blood taken in single meal and long-term starvation resistance. Furthermore, this species had a high natural rate of infection with Tryp. conorhini (46%) and Tryp. lewisi (27%). CONCLUSIONS: For T. rubrofasciata of Vietnam, a high rate of fecundity throughout the year, a high capacity for starvation, and its occurrence in synanthropic environments of urban areas with a high availability of food sources are risk factors to be taken into account by vector control campaigns. The several allergic reactions caused by their bites and their high infection with Tryp. lewisi highlight the need to implement specific control programmes for T. rubrofasciata in Vietnam.


Asunto(s)
Conducta Alimentaria , Insectos Vectores/fisiología , Estadios del Ciclo de Vida , Reproducción , Triatoma/fisiología , Animales , Brasil , Citocromos b/genética , Citogenética , Variación Genética , Genotipo , Insectos Vectores/clasificación , Insectos Vectores/genética , Insectos Vectores/parasitología , Cariotipo , Análisis de Secuencia de ADN , Triatoma/clasificación , Triatoma/genética , Triatoma/parasitología , Trypanosoma/aislamiento & purificación , Vietnam
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA