Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 89(5): 2024-2047, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36695294

RESUMEN

This article focuses on clinical applications of arterial spin labeling (ASL) and is part of a wider effort from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group to update and expand on the recommendations provided in the 2015 ASL consensus paper. Although the 2015 consensus paper provided general guidelines for clinical applications of ASL MRI, there was a lack of guidance on disease-specific parameters. Since that time, the clinical availability and clinical demand for ASL MRI has increased. This position paper provides guidance on using ASL in specific clinical scenarios, including acute ischemic stroke and steno-occlusive disease, arteriovenous malformations and fistulas, brain tumors, neurodegenerative disease, seizures/epilepsy, and pediatric neuroradiology applications, focusing on disease-specific considerations for sequence optimization and interpretation. We present several neuroradiological applications in which ASL provides unique information essential for making the diagnosis. This guidance is intended for anyone interested in using ASL in a routine clinical setting (i.e., on a single-subject basis rather than in cohort studies) building on the previous ASL consensus review.


Asunto(s)
Accidente Cerebrovascular Isquémico , Enfermedades Neurodegenerativas , Humanos , Niño , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Marcadores de Spin , Perfusión , Circulación Cerebrovascular
2.
Pediatr Radiol ; 53(1): 159-168, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36063184

RESUMEN

Pediatric neuroradiology is a subspecialty within radiology, with possible pathways to train within the discipline from neuroradiology or pediatric radiology. Formalized pediatric neuroradiology training programs are not available in most European countries. We aimed to construct a European consensus document providing recommendations for the safe practice of pediatric neuroradiology. We particularly emphasize imaging techniques that should be available, optimal site conditions and facilities, recommended team requirements and specific indications and protocol modifications for each imaging modality employed for pediatric neuroradiology studies. The present document serves as guidance to the optimal setup and organization for carrying out pediatric neuroradiology diagnostic and interventional procedures. Clinical activities should always be carried out in full agreement with national provisions and regulations. Continued education of all parties involved is a requisite for preserving pediatric neuroradiology practice at a high level.


Asunto(s)
Radiología , Humanos , Niño , Unión Europea , Consenso , Radiología/métodos , Europa (Continente)
3.
Alzheimers Dement ; 19(5): 1729-1741, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36209379

RESUMEN

INTRODUCTION: Etiological diagnosis of neurocognitive disorders of middle-old age relies on biomarkers, although evidence for their rational use is incomplete. A European task force is defining a diagnostic workflow where expert experience fills evidence gaps for biomarker validity and prioritization. We report methodology and preliminary results. METHODS: Using a Delphi consensus method supported by a systematic literature review, 22 delegates from 11 relevant scientific societies defined workflow assumptions. RESULTS: We extracted diagnostic accuracy figures from literature on the use of biomarkers in the diagnosis of main forms of neurocognitive disorders. Supported by this evidence, panelists defined clinical setting (specialist outpatient service), application stage (MCI-mild dementia), and detailed pre-assessment screening (clinical-neuropsychological evaluations, brain imaging, and blood tests). DISCUSSION: The Delphi consensus on these assumptions set the stage for the development of the first pan-European workflow for biomarkers' use in the etiological diagnosis of middle-old age neurocognitive disorders at MCI-mild dementia stages. HIGHLIGHTS: Rational use of biomarkers in neurocognitive disorders lacks consensus in Europe. A consensus of experts will define a workflow for the rational use of biomarkers. The diagnostic workflow will be patient-centered and based on clinical presentation. The workflow will be updated as new evidence accrues.


Asunto(s)
Disfunción Cognitiva , Demencia , Humanos , Disfunción Cognitiva/diagnóstico , Consenso , Sensibilidad y Especificidad , Demencia/diagnóstico , Biomarcadores
4.
J Magn Reson Imaging ; 55(1): 154-163, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34189804

RESUMEN

BACKGROUND: The mechanisms driving primary progressive and relapsing-remitting multiple sclerosis (PPMS/RRMS) phenotypes are unknown. Magnetic resonance imaging (MRI) studies support the involvement of gray matter (GM) in the degeneration, highlighting its damage as an early feature of both phenotypes. However, the role of GM microstructure is unclear, calling for new methods for its decryption. PURPOSE: To investigate the morphometric and microstructural GM differences between PPMS and RRMS to characterize GM tissue degeneration using MRI. STUDY TYPE: Prospective cross-sectional study. SUBJECTS: Forty-five PPMS (26 females) and 45 RRMS (32 females) patients. FIELD STRENGTH/SEQUENCE: 3T scanner. Three-dimensional (3D) fast field echo T1-weighted (T1-w), 3D turbo spin echo (TSE) T2-w, 3D TSE fluid-attenuated inversion recovery, and spin echo-echo planar imaging diffusion MRI (dMRI). ASSESSMENT: T1-w and dMRI data were employed for providing information about morphometric and microstructural features, respectively. For dMRI, both diffusion tensor imaging and 3D simple harmonics oscillator based reconstruction and estimation models were used for feature extraction from a predefined set of regions. A support vector machine (SVM) was used to perform patients' classification relying on all these measures. STATISTICAL TESTS: Differences between MS phenotypes were investigated using the analysis of covariance and statistical tests (P < 0.05 was considered statistically significant). RESULTS: All the dMRI indices showed significant microstructural alterations between the considered MS phenotypes, for example, the mode and the median of the return to the plane probability in the hippocampus. Conversely, thalamic volume was the only morphometric feature significantly different between the two MS groups. Ten of the 12 features retained by the selection process as discriminative across the two MS groups regarded the hippocampus. The SVM classifier using these selected features reached an accuracy of 70% and a precision of 69%. DATA CONCLUSION: We provided evidence in support of the ability of dMRI to discriminate between PPMS and RRMS, as well as highlight the central role of the hippocampus. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 3.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Estudios Transversales , Imagen de Difusión Tensora , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Fenotipo , Estudios Prospectivos
5.
Mult Scler ; 28(4): 550-560, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34378437

RESUMEN

BACKGROUND: The underlying pathogenesis of surface-in grey matter abnormalities in MS, demonstrated by both neuropathology and advanced MRI analyses, is under investigation and it might be related to CSF-mediated mechanism of inflammation and/or damage. OBJECTIVE: To examine the link of CSF inflammatory profile with the damage of three regions early-involved in MS and bordering with CSF: thalamus, hippocampus and cerebellum. METHODS: In this longitudinal, prospective study, we evaluated, in 109 relapsing-remitting MS patients, at diagnosis and after 2-year follow-up, the association between the baseline CSF level of 19 inflammatory mediators and the volume changes of thalamus, hippocampus, cerebellar cortex and control regions (globus pallidus, putamen). RESULTS: The multivariable analysis showed that the CXCL13 and sCD163 CSF levels at baseline were independent predictors of thalamus (Rmodel2=0.80; p < 0.001) and hippocampus (Rmodel2=0.47; p < 0.001) volume change after 2-year follow-up. These molecules, plus CCL25, IFN-γ and fibrinogen, were independent predictors of the cerebellar cortex volume loss (Rmodel2=0.60; p < 0.001). No independent predictors of volume changes of the control regions were found. CONCLUSION: Our results indicate an association between the CSF inflammatory profile and grey matter volume loss of regions anatomically close to CSF boundaries, thus supporting the hypothesis of a surface-in GM damage in MS.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Atrofia/patología , Encéfalo/patología , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple Recurrente-Remitente/patología , Estudios Prospectivos , Tálamo/diagnóstico por imagen , Tálamo/patología
6.
Mult Scler ; 28(13): 2090-2098, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35765211

RESUMEN

BACKGROUND: Data on the effect of dimethyl fumarate (DMF) on focal and diffuse gray matter (GM) damage, a relevant pathological substrate of multiple sclerosis (MS)-related disability are lacking. OBJECTIVE: To evaluate the DMF effect on cortical lesions (CLs) accumulation and global and regional GM atrophy in subjects with relapsing-remitting MS. METHODS: A total of 148 patients (mean age 38.1 ± 9.7 years) treated with DMF ended a 2-year longitudinal study. All underwent regular Expanded Disability Status Scale (EDSS assessment), and at least two 3T-magnetic resonance imaging (MRI) at 3 and 24 months after DMF initiation. CLs and changes in global and regional atrophy of several brain regions were compared with 47 untreated age and sex-matched patients. RESULTS: DMF-treated patients showed lower CLs accumulation (median 0[0-3] vs 2[0-7], p < 0.001) with respect to controls. Global cortical thickness (p < 0.001) and regional thickness and volume were lower in treated group (cerebellum, hippocampus, caudate, and putamen: p < 0.001; thalamus p = 0.03). Lower relapse rate (14% vs 40%, p < 0.001), EDSS change (0.2 ± 0.4 vs 0.4 ± 0.9, p < 0.001), and new WM lesions (median 0[0-5] vs 2[0-6], p < 0.001) were reported. No severe adverse drug reactions occurred. CONCLUSIONS: Beyond the well-known effect on disease activity, these results provide evidence of the effect of DMF through reduced progression of focal and diffuse GM damage.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Adulto , Atrofia/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Dimetilfumarato/efectos adversos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Persona de Mediana Edad , Esclerosis Múltiple/patología , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/patología
7.
MAGMA ; 35(1): 163-186, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34919195

RESUMEN

Cancer therapy for both central nervous system (CNS) and non-CNS tumors has been previously associated with transient and long-term cognitive deterioration, commonly referred to as 'chemo fog'. This therapy-related damage to otherwise normal-appearing brain tissue is reported using post-mortem neuropathological analysis. Although the literature on monitoring therapy effects on structural magnetic resonance imaging (MRI) is well established, such macroscopic structural changes appear relatively late and irreversible. Early quantitative MRI biomarkers of therapy-induced damage would potentially permit taking these treatment side effects into account, paving the way towards a more personalized treatment planning.This systematic review (PROSPERO number 224196) provides an overview of quantitative tomographic imaging methods, potentially identifying the adverse side effects of cancer therapy in normal-appearing brain tissue. Seventy studies were obtained from the MEDLINE and Web of Science databases. Studies reporting changes in normal-appearing brain tissue using MRI, PET, or SPECT quantitative biomarkers, related to radio-, chemo-, immuno-, or hormone therapy for any kind of solid, cystic, or liquid tumor were included. The main findings of the reviewed studies were summarized, providing also the risk of bias of each study assessed using a modified QUADAS-2 tool. For each imaging method, this review provides the methodological background, and the benefits and shortcomings of each method from the imaging perspective. Finally, a set of recommendations is proposed to support future research.


Asunto(s)
Trastornos del Conocimiento , Neoplasias , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
8.
Radiol Med ; 127(9): 998-1022, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36070064

RESUMEN

BACKGROUND: Radiological evaluation of dementia is expected to increase more and more in routine practice due to both the primary role of neuroimaging in the diagnostic pathway and the increasing incidence of the disease. Despite this, radiologists often do not follow a disease-oriented approach to image interpretation, for several reasons, leading to reports of limited value to clinicians. In our work, through an intersocietal consensus on the main mandatory knowledge about dementia, we proposed a disease-oriented protocol to optimize and standardize the acquisition/evaluation/interpretation and reporting of radiological images. Our main purpose is to provide a practical guideline for the radiologist to help increase the effectiveness of interdisciplinary dialogue and diagnostic accuracy in daily practice. RESULTS: We defined key clinical and imaging features of the dementias (A), recommended MRI protocol (B), proposed a disease-oriented imaging evaluation and interpretation (C) and report (D) with a glimpse to future avenues (E). The proposed radiological practice is to systematically evaluate and score atrophy, white matter changes, microbleeds, small vessel disease, consider the use of quantitative measures using commercial software tools critically, and adopt a structured disease-oriented report. In the expanding field of cognitive disorders, the only effective assessment approach is the standardized disease-oriented one, which includes a multidisciplinary integration of the clinical picture, MRI, CSF and blood biomarkers and nuclear medicine.


Asunto(s)
Demencia , Neuroimagen , Biomarcadores , Consenso , Demencia/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos
9.
Neuroimage ; 218: 116932, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32416226

RESUMEN

BACKGROUND: The amygdala and the hippocampus are two limbic structures that play a critical role in cognition and behavior, however their manual segmentation and that of their smaller nuclei/subfields in multicenter datasets is time consuming and difficult due to the low contrast of standard MRI. Here, we assessed the reliability of the automated segmentation of amygdalar nuclei and hippocampal subfields across sites and vendors using FreeSurfer in two independent cohorts of older and younger healthy adults. METHODS: Sixty-five healthy older (cohort 1) and 68 younger subjects (cohort 2), from the PharmaCog and CoRR consortia, underwent repeated 3D-T1 MRI (interval 1-90 days). Segmentation was performed using FreeSurfer v6.0. Reliability was assessed using volume reproducibility error (ε) and spatial overlapping coefficient (DICE) between test and retest session. RESULTS: Significant MRI site and vendor effects (p â€‹< â€‹.05) were found in a few subfields/nuclei for the ε, while extensive effects were found for the DICE score of most subfields/nuclei. Reliability was strongly influenced by volume, as ε correlated negatively and DICE correlated positively with volume size of structures (absolute value of Spearman's r correlations >0.43, p â€‹< â€‹1.39E-36). In particular, volumes larger than 200 â€‹mm3 (for amygdalar nuclei) and 300 â€‹mm3 (for hippocampal subfields, except for molecular layer) had the best test-retest reproducibility (ε â€‹< â€‹5% and DICE â€‹> â€‹0.80). CONCLUSION: Our results support the use of volumetric measures of larger amygdalar nuclei and hippocampal subfields in multisite MRI studies. These measures could be useful for disease tracking and assessment of efficacy in drug trials.


Asunto(s)
Amígdala del Cerebelo/anatomía & histología , Hipocampo/anatomía & histología , Procesamiento de Imagen Asistido por Computador/normas , Neuroimagen/normas , Programas Informáticos , Adulto , Anciano , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/normas , Masculino , Persona de Mediana Edad , Neuroimagen/métodos , Reproducibilidad de los Resultados
10.
Neuroradiology ; 62(1): 7-14, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31676960

RESUMEN

This document sets out standards for training in Interventional Neuroradiology (INR) in Europe. These standards have been developed by a working group of the European Society of Neuroradiology (ESNR) and the European Society of Minimally Invasive Neurological Therapy (ESMINT) on the initiative and under the umbrella of the Division of Neuroradiology/Section of Radiology of the European Union of Medical Specialists (UEMS).


Asunto(s)
Neurorradiografía/normas , Radiología Intervencionista/educación , Radiología Intervencionista/normas , Certificación/normas , Europa (Continente) , Humanos
11.
BMC Med Inform Decis Mak ; 20(1): 149, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631306

RESUMEN

BACKGROUND: Combining MRI techniques with machine learning methodology is rapidly gaining attention as a promising method for staging of brain gliomas. This study assesses the diagnostic value of such a framework applied to dynamic susceptibility contrast (DSC)-MRI in classifying treatment-naïve gliomas from a multi-center patients into WHO grades II-IV and across their isocitrate dehydrogenase (IDH) mutation status. METHODS: Three hundred thirty-three patients from 6 tertiary centres, diagnosed histologically and molecularly with primary gliomas (IDH-mutant = 151 or IDH-wildtype = 182) were retrospectively identified. Raw DSC-MRI data was post-processed for normalised leakage-corrected relative cerebral blood volume (rCBV) maps. Shape, intensity distribution (histogram) and rotational invariant Haralick texture features over the tumour mask were extracted. Differences in extracted features across glioma grades and mutation status were tested using the Wilcoxon two-sample test. A random-forest algorithm was employed (2-fold cross-validation, 250 repeats) to predict grades or mutation status using the extracted features. RESULTS: Shape, distribution and texture features showed significant differences across mutation status. WHO grade II-III differentiation was mostly driven by shape features while texture and intensity feature were more relevant for the III-IV separation. Increased number of features became significant when differentiating grades further apart from one another. Gliomas were correctly stratified by mutation status in 71% and by grade in 53% of the cases (87% of the gliomas grades predicted with distance less than 1). CONCLUSIONS: Despite large heterogeneity in the multi-center dataset, machine learning assisted DSC-MRI radiomics hold potential to address the inherent variability and presents a promising approach for non-invasive glioma molecular subtyping and grading.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Aprendizaje Automático , Imagen por Resonancia Magnética , Mutación , Clasificación del Tumor , Estudios Retrospectivos
12.
Neuroimage ; 199: 440-453, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31075392

RESUMEN

Brain arteriovenous malformations (AVMs) are congenital vascular anomalies characterized by arteriovenous shunting through a network of coiled and tortuous vessels. Because of this anatomy, the venous drainage of an AVM is hypothesized to contain more oxygenated, arterialized blood than healthy veins. By exploiting the paramagnetic properties of deoxygenated hemoglobin in venous blood using magnetic resonance imaging (MRI) quantitative susceptibility mapping (QSM), we aimed to explore venous density and oxygen saturation (SvO2) in patients with a brain AVM. We considered three groups of subjects: patients with a brain AVM before treatment using gamma knife radiosurgery (GKR); patients three or more years post-GKR treatment; and healthy volunteers. First, we investigated the appearance of AVMs on QSM images. Then, we investigated whether QSM could detect increased SvO2 in the veins draining the malformations. In patients before GKR, venous density, but not SvO2, was significantly larger in the hemisphere containing the AVM compared to the contralateral hemisphere (p = 0.03). Such asymmetry was not observed in patients after GKR or in healthy volunteers. Moreover, in all patients before GKR, the vein immediately draining the AVM nidus had a higher SvO2 than healthy veins. Therefore, QSM can be used to detect SvO2 alterations in brain AVMs. However, since factors such as flow-induced signal dephasing or the presence of hemosiderin deposits also strongly affect QSM image contrast, AVM vein segmentation must be performed based on alternative MRI acquisitions, e.g., time of flight magnetic resonance angiography or T1-weighted images. This is the first study to show, non-invasively, that AVM draining veins have a significantly larger SvO2 than healthy veins, which is a finding congruent with arteriovenous shunting.


Asunto(s)
Fístula Arteriovenosa/diagnóstico por imagen , Venas Cerebrales/diagnóstico por imagen , Hemoglobinas , Malformaciones Arteriovenosas Intracraneales/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Oxígeno/sangre , Adolescente , Adulto , Fístula Arteriovenosa/radioterapia , Femenino , Estudios de Seguimiento , Humanos , Malformaciones Arteriovenosas Intracraneales/radioterapia , Masculino , Persona de Mediana Edad , Radiocirugia , Adulto Joven
13.
Ann Neurol ; 83(4): 739-755, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29518260

RESUMEN

OBJECTIVE: Gray matter (GM) damage and meningeal inflammation have been associated with early disease onset and a more aggressive disease course in multiple sclerosis (MS), but can these changes be identified in the patient early in the disease course? METHODS: To identify possible biomarkers linking meningeal inflammation, GM damage, and disease severity, gene and protein expression were analyzed in meninges and cerebrospinal fluid (CSF) from 27 postmortem secondary progressive MS and 14 control cases. Combined cytokine/chemokine CSF profiling and 3T magnetic resonance imaging (MRI) were performed at diagnosis in 2 independent cohorts of MS patients (35 and 38 subjects) and in 26 non-MS patients. RESULTS: Increased expression of proinflammatory cytokines (IFNγ, TNF, IL2, and IL22) and molecules related to sustained B-cell activity and lymphoid-neogenesis (CXCL13, CXCL10, LTα, IL6, and IL10) was detected in the meninges and CSF of postmortem MS cases with high levels of meningeal inflammation and GM demyelination. Similar proinflammatory patterns, including increased levels of CXCL13, TNF, IFNγ, CXCL12, IL6, IL8, and IL10, together with high levels of BAFF, APRIL, LIGHT, TWEAK, sTNFR1, sCD163, MMP2, and pentraxin III, were detected in the CSF of MS patients with higher levels of GM damage at diagnosis. INTERPRETATION: A common pattern of intrathecal (meninges and CSF) inflammatory profile strongly correlates with increased cortical pathology, both at the time of diagnosis and at death. These results suggest a role for detailed CSF analysis combined with MRI as a prognostic marker for more aggressive MS. Ann Neurol 2018 Ann Neurol 2018;83:739-755.


Asunto(s)
Corteza Cerebral/patología , Citocinas/líquido cefalorraquídeo , Sustancia Gris/patología , Meninges/metabolismo , Esclerosis Múltiple/patología , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , Corteza Cerebral/diagnóstico por imagen , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Meninges/diagnóstico por imagen , Persona de Mediana Edad , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/diagnóstico por imagen , Curva ROC
14.
J Magn Reson Imaging ; 47(1): 131-140, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28480617

RESUMEN

PURPOSE: To compare registration strategies to align arterial spin labeling (ASL) with 3D T1-weighted (T1w) images, with the goal of reducing the between-subject variability of cerebral blood flow (CBF) images. MATERIALS AND METHODS: Multi-center 3T ASL data were collected at eight sites with four different sequences in the multi-center GENetic Frontotemporal dementia Initiative (GENFI) study. In a total of 48 healthy controls, we compared the following image registration options: (I) which images to use for registration (perfusion-weighted images [PWI] to the segmented gray matter (GM) probability map (pGM) (CBF-pGM) or M0 to T1w (M0-T1w); (II) which transformation to use (rigid-body or non-rigid); and (III) whether to mask or not (no masking, M0-based FMRIB software library Brain Extraction Tool [BET] masking). In addition to visual comparison, we quantified image similarity using the Pearson correlation coefficient (CC), and used the Mann-Whitney U rank sum test. RESULTS: CBF-pGM outperformed M0-T1w (CC improvement 47.2% ± 22.0%; P < 0.001), and the non-rigid transformation outperformed rigid-body (20.6% ± 5.3%; P < 0.001). Masking only improved the M0-T1w rigid-body registration (14.5% ± 15.5%; P = 0.007). CONCLUSION: The choice of image registration strategy impacts ASL group analyses. The non-rigid transformation is promising but requires validation. CBF-pGM rigid-body registration without masking can be used as a default strategy. In patients with expansive perfusion deficits, M0-T1w may outperform CBF-pGM in sequences with high effective spatial resolution. BET-masking only improves M0-T1w registration when the M0 image has sufficient contrast. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:131-140.


Asunto(s)
Circulación Cerebrovascular , Demencia Frontotemporal/diagnóstico por imagen , Imagen por Resonancia Magnética , Marcadores de Spin , Adulto , Arterias , Encéfalo/diagnóstico por imagen , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Masculino , Persona de Mediana Edad , Perfusión , Reproducibilidad de los Resultados , Adulto Joven
15.
Neurodegener Dis ; 18(5-6): 281-301, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30695786

RESUMEN

Non-invasive brain stimulation (NIBS) is emerging as a promising rehabilitation tool for a number of neurodegenerative diseases. However, the therapeutic mechanisms of NIBS are not completely understood. In this review, we will summarize NIBS results in the context of brain imaging studies of functional connectivity and metabolites to gain insight into the possible mechanisms underlying recovery. We will briefly discuss how the clinical manifestations of common neurodegenerative disorders may be related with aberrant connectivity within large-scale neural networks. We will then focus on recent studies combining resting-state functional magnetic resonance imaging with NIBS to delineate how stimulation of different brain regions induce complex network modifications, both at the local and distal level. Moreover, we will review studies combining magnetic resonance spectroscopy and NIBS to investigate how microscale changes are related to modifications of large-scale networks. Finally, we will re-examine previous NIBS studies in dementia in light of this network perspective. A better understanding of NIBS impact on the functionality of large-scale brain networks may be useful to design beneficial treatments for neurodegenerative disorders.


Asunto(s)
Encéfalo/fisiopatología , Demencia/fisiopatología , Enfermedades Neurodegenerativas/terapia , Plasticidad Neuronal/fisiología , Encéfalo/cirugía , Demencia/terapia , Humanos , Imagen por Resonancia Magnética , Enfermedades Neurodegenerativas/fisiopatología , Resultado del Tratamiento
16.
Hum Brain Mapp ; 38(12): 5831-5844, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28885752

RESUMEN

Arterial spin labeling (ASL) MRI with a dual-echo readout module (DE-ASL) enables noninvasive simultaneous acquisition of cerebral blood flow (CBF)-weighted images and blood oxygenation level dependent (BOLD) contrast. Up to date, resting-state functional connectivity (FC) studies based on CBF fluctuations have been very limited, while the BOLD is still the method most frequently used. The purposes of this technical report were (i) to assess the potentiality of the DE-ASL sequence for the quantification of resting-state FC and brain organization, with respect to the conventional BOLD (cvBOLD) and (ii) to investigate the relationship between a series of complex network measures and the CBF information. Thirteen volunteers were scanned on a 3 T scanner acquiring a pseudocontinuous multislice DE-ASL sequence, from which the concomitant BOLD (ccBOLD) simultaneously to the ASL can be extracted. In the proposed comparison, the brain FC and graph-theoretical analysis were used for quantifying the connectivity strength between pairs of regions and for assessing the network model properties in all the sequences. The main finding was that the ccBOLD part of the DE-ASL sequence provided highly comparable connectivity results compared to cvBOLD. As expected, because of its different nature, ASL sequence showed different patterns of brain connectivity and graph indices compared to BOLD sequences. To conclude, the resting-state FC can be reliably detected using DE-ASL, simultaneously to CBF quantifications, whereas a single fMRI experiment precludes the quantitative measurement of BOLD signal changes. Hum Brain Mapp 38:5831-5844, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos , Oxígeno/sangre , Adulto , Artefactos , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Descanso
17.
Neuroimage ; 113: 143-52, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25818685

RESUMEN

INTRODUCTION: A main obstacle that impedes standardized clinical and research applications of arterial spin labeling (ASL), is the substantial differences between the commercial implementations of ASL from major MRI vendors. In this study, we compare a single identical 2D gradient-echo EPI pseudo-continuous ASL (PCASL) sequence implemented on 3T scanners from three vendors (General Electric Healthcare, Philips Healthcare and Siemens Healthcare) within the same center and with the same subjects. MATERIAL AND METHODS: Fourteen healthy volunteers (50% male, age 26.4±4.7years) were scanned twice on each scanner in an interleaved manner within 3h. Because of differences in gradient and coil specifications, two separate studies were performed with slightly different sequence parameters, with one scanner used across both studies for comparison. Reproducibility was evaluated by means of quantitative cerebral blood flow (CBF) agreement and inter-session variation, both on a region-of-interest (ROI) and voxel level. In addition, a qualitative similarity comparison of the CBF maps was performed by three experienced neuro-radiologists. RESULTS: There were no CBF differences between vendors in study 1 (p>0.1), but there were CBF differences of 2-19% between vendors in study 2 (p<0.001 in most gray matter ROIs) and 10-22% difference in CBF values obtained with the same vendor between studies (p<0.001 in most gray matter ROIs). The inter-vendor inter-session variation was not significantly larger than the intra-vendor variation in all (p>0.1) but one of the ROIs (p<0.001). CONCLUSION: This study demonstrates the possibility to acquire comparable cerebral CBF maps on scanners of different vendors. Small differences in sequence parameters can have a larger effect on the reproducibility of ASL than hardware or software differences between vendors. These results suggest that researchers should strive to employ identical labeling and readout strategies in multi-center ASL studies.


Asunto(s)
Arterias Cerebrales/anatomía & histología , Imagen por Resonancia Magnética/instrumentación , Marcadores de Spin , Adulto , Artefactos , Arterias Cerebrales/fisiología , Circulación Cerebrovascular , Imagen Eco-Planar/instrumentación , Imagen Eco-Planar/normas , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/normas , Masculino , Movimiento (Física) , Estudios Multicéntricos como Asunto , Perfusión , Estándares de Referencia , Reproducibilidad de los Resultados , Adulto Joven
19.
J Magn Reson Imaging ; 40(4): 937-48, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24924449

RESUMEN

PURPOSE: To assess the applicability of arterial spin labeling (ASL) in comparison to blood-oxygenation-level-dependent (BOLD) contrast fMRI in detecting brain activations elicited by active and passive hand movements. MATERIALS AND METHODS: A block design for ASL and BOLD fMRI was applied in 8 healthy subjects using active and passive hand tasks. Data analyses were performed at individual and group level, comparing both the different movements and the performance of the two techniques. RESULTS: Group analyses showed involvement of the same areas during both tasks, as the contralateral sensorimotor cortex, supplementary motor area, cerebellum, inferior parietal lobes, thalamus. ASL detected smaller activation volumes than BOLD, but the areas had a high degree of colocalization. Few significant differences (P < 0.05) were found when the two tasks were compared for the number of activated voxels, coordinates of center of mass, and CBF estimates. Considering together all the areas, the mean %BOLD change was 0.79 ± 0.27 and 0.73 ± 0.24 for the active and passive movements respectively, while the mean %CBF changes were 34.1 ± 8.9 and 27.1 ± 14.8. CONCLUSION: Our findings confirm passive and active tasks are strongly coupled, supporting the importance of passive tasks as a diagnostic tool in the clinical setting. ASL fMRI proved suitable for functional mapping and quantifying CBF changes, making it a promising technique for patient cohort applications.


Asunto(s)
Velocidad del Flujo Sanguíneo/fisiología , Mapeo Encefálico/métodos , Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Interpretación de Imagen Asistida por Computador/métodos , Angiografía por Resonancia Magnética/métodos , Movimiento/fisiología , Adulto , Encéfalo/irrigación sanguínea , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Marcadores de Spin
20.
Eur Radiol Exp ; 8(1): 33, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38409562

RESUMEN

We compared choroid plexus (ChP) manual segmentation on non-contrast-enhanced (non-CE) sequences and reference standard CE T1- weighted (T1w) sequences in 61 multiple sclerosis patients prospectively included. ChP was separately segmented on T1w, T2-weighted (T2w) fluid-attenuated inversion-recovery (FLAIR), and CE-T1w sequences. Inter-rater variability assessed on 10 subjects showed high reproducibility between sequences measured by intraclass correlation coefficient (T1w 0.93, FLAIR 0.93, CE-T1w 0.99). CE-T1w showed higher signal-to-noise ratio and contrast-to-noise ratio (CE-T1w 23.77 and 18.49, T1w 13.73 and 7.44, FLAIR 13.09 and 10.77, respectively). Manual segmentation of ChP resulted 3.073 ± 0.563 mL (mean ± standard deviation) on T1w, 3.787 ± 0.679 mL on FLAIR, and 2.984 ± 0.506 mL on CE-T1w images, with an error of 28.02 ± 19.02% for FLAIR and 3.52 ± 12.61% for T1w. FLAIR overestimated ChP volume compared to CE-T1w (p < 0.001). The Dice similarity coefficient of CE-T1w versus T1w and FLAIR was 0.67 ± 0.05 and 0.68 ± 0.05, respectively. Spatial error distribution per slice was calculated after nonlinear coregistration to the standard MNI152 space and showed a heterogeneous profile along the ChP especially near the fornix and the hippocampus. Quantitative analyses suggest T1w as a surrogate of CE-T1w to estimate ChP volume.Relevance statement To estimate the ChP volume, CE-T1w can be replaced by non-CE T1w sequences because the error is acceptable, while FLAIR overestimates the ChP volume. This encourages the development of automatic tools for ChP segmentation, also improving the understanding of the role of the ChP volume in multiple sclerosis, promoting longitudinal studies.Key points • CE-T1w sequences are considered the reference standard for ChP manual segmentation.• FLAIR sequences showed a higher CNR than T1w sequences but overestimated the ChP volume.• Non-CE T1w sequences can be a surrogate of CE-T1w sequences for manual segmentation of ChP.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Reproducibilidad de los Resultados , Plexo Coroideo/diagnóstico por imagen , Imagen por Resonancia Magnética , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA