Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 594(7861): 117-123, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34012113

RESUMEN

The human genome expresses thousands of natural antisense transcripts (NAT) that can regulate epigenetic state, transcription, RNA stability or translation of their overlapping genes1,2. Here we describe MAPT-AS1, a brain-enriched NAT that is conserved in primates and contains an embedded mammalian-wide interspersed repeat (MIR), which represses tau translation by competing for ribosomal RNA pairing with the MAPT mRNA internal ribosome entry site3. MAPT encodes tau, a neuronal intrinsically disordered protein (IDP) that stabilizes axonal microtubules. Hyperphosphorylated, aggregation-prone tau forms the hallmark inclusions of tauopathies4. Mutations in MAPT cause familial frontotemporal dementia, and common variations forming the MAPT H1 haplotype are a significant risk factor in many tauopathies5 and Parkinson's disease. Notably, expression of MAPT-AS1 or minimal essential sequences from MAPT-AS1 (including MIR) reduces-whereas silencing MAPT-AS1 expression increases-neuronal tau levels, and correlate with tau pathology in human brain. Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.


Asunto(s)
Biosíntesis de Proteínas/genética , Proteostasis/genética , ARN sin Sentido/genética , Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Anciano , Animales , Sitios de Unión , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Diferenciación Celular , Progresión de la Enfermedad , Femenino , Humanos , Sitios Internos de Entrada al Ribosoma/genética , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Neuronas/metabolismo , Neuronas/patología , Ribosomas/metabolismo , Proteínas tau/biosíntesis
2.
Eur Heart J ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848106

RESUMEN

BACKGROUND AND AIMS: A cardiovascular disease polygenic risk score (CVD-PRS) can stratify individuals into different categories of cardiovascular risk, but whether the addition of a CVD-PRS to clinical risk scores improves the identification of individuals at increased risk in a real-world clinical setting is unknown. METHODS: The Genetics and the Vascular Health Check Study (GENVASC) was embedded within the UK National Health Service Health Check (NHSHC) programme which invites individuals between 40-74 years of age without known CVD to attend an assessment in a UK general practice where CVD risk factors are measured and a CVD risk score (QRISK2) is calculated. Between 2012-2020, 44,141 individuals (55.7% females, 15.8% non-white) who attended an NHSHC in 147 participating practices across two counties in England were recruited and followed. When 195 individuals (cases) had suffered a major CVD event (CVD death, myocardial infarction or acute coronary syndrome, coronary revascularisation, stroke), 396 propensity-matched controls with a similar risk profile were identified, and a nested case-control genetic study undertaken to see if the addition of a CVD-PRS to QRISK2 in the form of an integrated risk tool (IRT) combined with QRISK2 would have identified more individuals at the time of their NHSHC as at high risk (QRISK2 10-year CVD risk of ≥10%), compared with QRISK2 alone. RESULTS: The distribution of the standardised CVD-PRS was significantly different in cases compared with controls (cases mean score .32; controls, -.18, P = 8.28×10-9). QRISK2 identified 61.5% (95% confidence interval [CI]: 54.3%-68.4%) of individuals who subsequently developed a major CVD event as being at high risk at their NHSHC, while the combination of QRISK2 and IRT identified 68.7% (95% CI: 61.7%-75.2%), a relative increase of 11.7% (P = 1×10-4). The odds ratio (OR) of being up-classified was 2.41 (95% CI: 1.03-5.64, P = .031) for cases compared with controls. In individuals aged 40-54 years, QRISK2 identified 26.0% (95% CI: 16.5%-37.6%) of those who developed a major CVD event, while the combination of QRISK2 and IRT identified 38.4% (95% CI: 27.2%-50.5%), indicating a stronger relative increase of 47.7% in the younger age group (P = .001). The combination of QRISK2 and IRT increased the proportion of additional cases identified similarly in women as in men, and in non-white ethnicities compared with white ethnicity. The findings were similar when the CVD-PRS was added to the atherosclerotic cardiovascular disease pooled cohort equations (ASCVD-PCE) or SCORE2 clinical scores. CONCLUSIONS: In a clinical setting, the addition of genetic information to clinical risk assessment significantly improved the identification of individuals who went on to have a major CVD event as being at high risk, especially among younger individuals. The findings provide important real-world evidence of the potential value of implementing a CVD-PRS into health systems.

3.
EMBO J ; 37(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29764981

RESUMEN

TDP-43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP-43 function at physiological levels both in vitro and in vivo Interestingly, we find that mutations within the C-terminal domain of TDP-43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP-43 loss- and gain-of-function effects. TDP-43 gain-of-function effects in these mice reveal a novel category of splicing events controlled by TDP-43, referred to as "skiptic" exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain-of-function mutation in endogenous Tardbp causes an adult-onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain-of-function and skiptic exons in ALS patient-derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP-43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Exones/genética , Humanos , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Empalme del ARN/genética
4.
Nucleic Acids Res ; 48(12): 6889-6905, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32479602

RESUMEN

Mutations in the RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease. FUS plays a role in numerous aspects of RNA metabolism, including mRNA splicing. However, the impact of ALS-causative mutations on splicing has not been fully characterized, as most disease models have been based on overexpressing mutant FUS, which will alter RNA processing due to FUS autoregulation. We and others have recently created knockin models that overcome the overexpression problem, and have generated high depth RNA-sequencing on FUS mutants in parallel to FUS knockout, allowing us to compare mutation-induced changes to genuine loss of function. We find that FUS-ALS mutations induce a widespread loss of function on expression and splicing. Specifically, we find that mutant FUS directly alters intron retention levels in RNA-binding proteins. Moreover, we identify an intron retention event in FUS itself that is associated with its autoregulation. Altered FUS levels have been linked to disease, and we show here that this novel autoregulation mechanism is altered by FUS mutations. Crucially, we also observe this phenomenon in other genetic forms of ALS, including those caused by TDP-43, VCP and SOD1 mutations, supporting the concept that multiple ALS genes interact in a regulatory network.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Homeostasis/genética , Proteína FUS de Unión a ARN/genética , Animales , Citoplasma/genética , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Humanos , Intrones/genética , Mutación con Pérdida de Función , Ratones , Ratones Noqueados , Mutación/genética , Empalme del ARN/genética , Superóxido Dismutasa-1/genética , Proteína que Contiene Valosina/genética
6.
Nature ; 521(7552): 371-375, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25970246

RESUMEN

It is generally believed that splicing removes introns as single units from precursor messenger RNA transcripts. However, some long Drosophila melanogaster introns contain a cryptic site, known as a recursive splice site (RS-site), that enables a multi-step process of intron removal termed recursive splicing. The extent to which recursive splicing occurs in other species and its mechanistic basis have not been examined. Here we identify highly conserved RS-sites in genes expressed in the mammalian brain that encode proteins functioning in neuronal development. Moreover, the RS-sites are found in some of the longest introns across vertebrates. We find that vertebrate recursive splicing requires initial definition of an 'RS-exon' that follows the RS-site. The RS-exon is then excluded from the dominant mRNA isoform owing to competition with a reconstituted 5' splice site formed at the RS-site after the first splicing step. Conversely, the RS-exon is included when preceded by cryptic promoters or exons that fail to reconstitute an efficient 5' splice site. Most RS-exons contain a premature stop codon such that their inclusion can decrease mRNA stability. Thus, by establishing a binary splicing switch, RS-sites demarcate different mRNA isoforms emerging from long genes by coupling cryptic elements with inclusion of RS-exons.


Asunto(s)
Empalme del ARN/genética , Vertebrados/genética , Animales , Ancirinas/genética , Secuencia de Bases , Encéfalo/citología , Encéfalo/metabolismo , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular/genética , Codón de Terminación/genética , Drosophila melanogaster/genética , Exones/genética , Femenino , Lóbulo Frontal/citología , Lóbulo Frontal/metabolismo , Humanos , Inmunoglobulinas/genética , Intrones/genética , Masculino , Regiones Promotoras Genéticas/genética , Isoformas de ARN/genética , Isoformas de ARN/metabolismo , Sitios de Empalme de ARN/genética , Estabilidad del ARN/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
Nature ; 526(7571): 82-90, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26367797

RESUMEN

The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.


Asunto(s)
Enfermedad/genética , Variación Genética/genética , Genoma Humano/genética , Salud , Adiponectina/sangre , Alelos , Estudios de Cohortes , Exoma/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Genética Médica , Genética de Población , Estudio de Asociación del Genoma Completo , Genómica , Humanos , Metabolismo de los Lípidos/genética , Masculino , Anotación de Secuencia Molecular , Receptores de LDL/genética , Estándares de Referencia , Análisis de Secuencia de ADN , Triglicéridos/sangre , Reino Unido
8.
PLoS Genet ; 14(5): e1007329, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29795570

RESUMEN

As part of a broader collaborative network of exome sequencing studies, we developed a jointly called data set of 5,685 Ashkenazi Jewish exomes. We make publicly available a resource of site and allele frequencies, which should serve as a reference for medical genetics in the Ashkenazim (hosted in part at https://ibd.broadinstitute.org, also available in gnomAD at http://gnomad.broadinstitute.org). We estimate that 34% of protein-coding alleles present in the Ashkenazi Jewish population at frequencies greater than 0.2% are significantly more frequent (mean 15-fold) than their maximum frequency observed in other reference populations. Arising via a well-described founder effect approximately 30 generations ago, this catalog of enriched alleles can contribute to differences in genetic risk and overall prevalence of diseases between populations. As validation we document 148 AJ enriched protein-altering alleles that overlap with "pathogenic" ClinVar alleles (table available at https://github.com/macarthur-lab/clinvar/blob/master/output/clinvar.tsv), including those that account for 10-100 fold differences in prevalence between AJ and non-AJ populations of some rare diseases, especially recessive conditions, including Gaucher disease (GBA, p.Asn409Ser, 8-fold enrichment); Canavan disease (ASPA, p.Glu285Ala, 12-fold enrichment); and Tay-Sachs disease (HEXA, c.1421+1G>C, 27-fold enrichment; p.Tyr427IlefsTer5, 12-fold enrichment). We next sought to use this catalog, of well-established relevance to Mendelian disease, to explore Crohn's disease, a common disease with an estimated two to four-fold excess prevalence in AJ. We specifically attempt to evaluate whether strong acting rare alleles, particularly protein-truncating or otherwise large effect-size alleles, enriched by the same founder-effect, contribute excess genetic risk to Crohn's disease in AJ, and find that ten rare genetic risk factors in NOD2 and LRRK2 are enriched in AJ (p < 0.005), including several novel contributing alleles, show evidence of association to CD. Independently, we find that genomewide common variant risk defined by GWAS shows a strong difference between AJ and non-AJ European control population samples (0.97 s.d. higher, p<10-16). Taken together, the results suggest coordinated selection in AJ population for higher CD risk alleles in general. The results and approach illustrate the value of exome sequencing data in case-control studies along with reference data sets like ExAC (sites VCF available via FTP at ftp.broadinstitute.org/pub/ExAC_release/release0.3/) to pinpoint genetic variation that contributes to variable disease predisposition across populations.


Asunto(s)
Enfermedad de Crohn/genética , Predisposición Genética a la Enfermedad/genética , Judíos/genética , Enfermedades Raras/genética , Algoritmos , Enfermedad de Crohn/epidemiología , Genética de Población , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Modelos Genéticos , Epidemiología Molecular , Polimorfismo de Nucleótido Simple , Enfermedades Raras/epidemiología
9.
Am J Hum Genet ; 100(2): 334-342, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28132693

RESUMEN

Mutations in more than 250 genes are implicated in inherited retinal dystrophy; the encoded proteins are involved in a broad spectrum of pathways. The presence of unsolved families after highly parallel sequencing strategies suggests that further genes remain to be identified. Whole-exome and -genome sequencing studies employed here in large cohorts of affected individuals revealed biallelic mutations in ARHGEF18 in three such individuals. ARHGEF18 encodes ARHGEF18, a guanine nucleotide exchange factor that activates RHOA, a small GTPase protein that is a key component of tight junctions and adherens junctions. This biological pathway is known to be important for retinal development and function, as mutation of CRB1, encoding another component, causes retinal dystrophy. The retinal structure in individuals with ARHGEF18 mutations resembled that seen in subjects with CRB1 mutations. Five mutations were found on six alleles in the three individuals: c.808A>G (p.Thr270Ala), c.1617+5G>A (p.Asp540Glyfs∗63), c.1996C>T (p.Arg666∗), c.2632G>T (p.Glu878∗), and c.2738_2761del (p.Arg913_Glu920del). Functional tests suggest that each disease genotype might retain some ARHGEF18 activity, such that the phenotype described here is not the consequence of nullizygosity. In particular, the p.Thr270Ala missense variant affects a highly conserved residue in the DBL homology domain, which is required for the interaction and activation of RHOA. Previously, knock-out of Arhgef18 in the medaka fish has been shown to cause larval lethality which is preceded by retinal defects that resemble those seen in zebrafish Crumbs complex knock-outs. The findings described here emphasize the peculiar sensitivity of the retina to perturbations of this pathway, which is highlighted as a target for potential therapeutic strategies.


Asunto(s)
Polaridad Celular , Células Epiteliales/metabolismo , Degeneración Retiniana/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética , Adulto , Alelos , Secuencia de Aminoácidos , Exoma , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Femenino , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Mutación Missense , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Linaje , Fenotipo , Retina/metabolismo , Degeneración Retiniana/diagnóstico , Distrofias Retinianas/genética , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
10.
Am J Hum Genet ; 100(1): 75-90, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28041643

RESUMEN

Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.


Asunto(s)
Análisis Mutacional de ADN , Variación Genética/genética , Genoma Humano/genética , Enfermedades de la Retina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Alelos , Secuencia de Bases , Coroideremia/genética , Etnicidad/genética , Exoma/genética , Femenino , Genes Recesivos/genética , Humanos , Intrones/genética , Masculino , Mutación , Enfermedades Raras/genética
11.
Am J Hum Genet ; 100(4): 592-604, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28285769

RESUMEN

Pre-mRNA splicing factors play a fundamental role in regulating transcript diversity both temporally and spatially. Genetic defects in several spliceosome components have been linked to a set of non-overlapping spliceosomopathy phenotypes in humans, among which skeletal developmental defects and non-syndromic retinitis pigmentosa (RP) are frequent findings. Here we report that defects in spliceosome-associated protein CWC27 are associated with a spectrum of disease phenotypes ranging from isolated RP to severe syndromic forms. By whole-exome sequencing, recessive protein-truncating mutations in CWC27 were found in seven unrelated families that show a range of clinical phenotypes, including retinal degeneration, brachydactyly, craniofacial abnormalities, short stature, and neurological defects. Remarkably, variable expressivity of the human phenotype can be recapitulated in Cwc27 mutant mouse models, with significant embryonic lethality and severe phenotypes in the complete knockout mice while mice with a partial loss-of-function allele mimic the isolated retinal degeneration phenotype. Our study describes a retinal dystrophy-related phenotype spectrum as well as its genetic etiology and highlights the complexity of the spliceosomal gene network.


Asunto(s)
Anomalías Múltiples/genética , Ciclofilinas/genética , Mutación , Isomerasa de Peptidilprolil/genética , Degeneración Retiniana/genética , Adolescente , Animales , Niño , Preescolar , Ciclofilinas/metabolismo , Femenino , Humanos , Masculino , Ratones , Linaje , Isomerasa de Peptidilprolil/metabolismo , Adulto Joven
12.
PLoS Genet ; 13(2): e1006587, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28187197

RESUMEN

The polarization of CD4+ T cells into distinct T helper cell lineages is essential for protective immunity against infection, but aberrant T cell polarization can cause autoimmunity. The transcription factor T-bet (TBX21) specifies the Th1 lineage and represses alternative T cell fates. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) that may be causative for autoimmune diseases. The majority of these polymorphisms are located within non-coding distal regulatory elements. It is considered that these genetic variants contribute to disease by altering the binding of regulatory proteins and thus gene expression, but whether these variants alter the binding of lineage-specifying transcription factors has not been determined. Here, we show that SNPs associated with the mucosal inflammatory diseases Crohn's disease, ulcerative colitis (UC) and celiac disease, but not rheumatoid arthritis or psoriasis, are enriched at T-bet binding sites. Furthermore, we identify disease-associated variants that alter T-bet binding in vitro and in vivo. ChIP-seq for T-bet in individuals heterozygous for the celiac disease-associated SNPs rs1465321 and rs2058622 and the IBD-associated SNPs rs1551398 and rs1551399, reveals decreased binding to the minor disease-associated alleles. Furthermore, we show that rs1465321 is an expression quantitative trait locus (eQTL) for the neighboring gene IL18RAP, with decreased T-bet binding associated with decreased expression of this gene. These results suggest that genetic polymorphisms may predispose individuals to mucosal autoimmune disease through alterations in T-bet binding. Other disease-associated variants may similarly act by modulating the binding of lineage-specifying transcription factors in a tissue-selective and disease-specific manner.


Asunto(s)
Enfermedad Celíaca/genética , Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple , Proteínas de Dominio T Box/genética , Animales , Sitios de Unión/genética , Western Blotting , Linfocitos T CD4-Positivos/metabolismo , Enfermedad Celíaca/metabolismo , Células Cultivadas , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/metabolismo , Expresión Génica , Estudio de Asociación del Genoma Completo/métodos , Humanos , Subunidad beta del Receptor de Interleucina-18/genética , Subunidad beta del Receptor de Interleucina-18/metabolismo , Ratones Noqueados , Unión Proteica/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Proteínas de Dominio T Box/metabolismo , Células TH1/metabolismo
13.
J Allergy Clin Immunol ; 144(5): 1364-1376, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31201888

RESUMEN

BACKGROUND: CCAAT enhancer-binding protein epsilon (C/EBPε) is a transcription factor involved in late myeloid lineage differentiation and cellular function. The only previously known disorder linked to C/EBPε is autosomal recessive neutrophil-specific granule deficiency leading to severely impaired neutrophil function and early mortality. OBJECTIVE: The aim of this study was to molecularly characterize the effects of C/EBPε transcription factor Arg219His mutation identified in a Finnish family with previously genetically uncharacterized autoinflammatory and immunodeficiency syndrome. METHODS: Genetic analysis, proteomics, genome-wide transcriptional profiling by means of RNA-sequencing, chromatin immunoprecipitation (ChIP) sequencing, and assessment of the inflammasome function of primary macrophages were performed. RESULTS: Studies revealed a novel mechanism of genome-wide gain-of-function that dysregulated transcription of 464 genes. Mechanisms involved dysregulated noncanonical inflammasome activation caused by decreased association with transcriptional repressors, leading to increased chromatin occupancy and considerable changes in transcriptional activity, including increased expression of NLR family, pyrin domain-containing 3 protein (NLRP3) and constitutively expressed caspase-5 in macrophages. CONCLUSION: We describe a novel autoinflammatory disease with defective neutrophil function caused by a homozygous Arg219His mutation in the transcription factor C/EBPε. Mutated C/EBPε acts as a regulator of both the inflammasome and interferome, and the Arg219His mutation causes the first human monogenic neomorphic and noncanonical inflammasomopathy/immunodeficiency. The mechanism, including widely dysregulated transcription, is likely not unique for C/EBPε. Similar multiomics approaches should also be used in studying other transcription factor-associated diseases.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Mutación con Ganancia de Función/genética , Síndromes de Inmunodeficiencia/genética , Inflamasomas/genética , Inflamación/genética , Macrófagos/metabolismo , Neutrófilos/fisiología , Anciano , Caspasas/genética , Caspasas/metabolismo , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Humanos , Inflamasomas/metabolismo , Macrófagos/patología , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Linaje , Análisis de Secuencia de ARN , Regulación hacia Arriba
14.
Am J Hum Genet ; 98(1): 34-44, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26708752

RESUMEN

The use of massively parallel sequencing of maternal cfDNA for non-invasive prenatal testing (NIPT) of aneuploidy is widely available. Recently, the scope of testing has increased to include selected subchromosomal abnormalities, but the number of samples reported has been small. We developed a calling pipeline based on a segmentation algorithm for the detection of these rearrangements in maternal plasma. The same read depth used in our standard pipeline for aneuploidy NIPT detected 15/18 (83%) samples with pathogenic rearrangements > 6 Mb but only 2/10 samples with rearrangements < 6 Mb, unless they were maternally inherited. There were two false-positive calls in 534 samples with no known subchromosomal abnormalities (specificity 99.6%). Using higher read depths, we detected 29/31 fetal subchromosomal abnormalities, including the three samples with maternally inherited microduplications. We conclude that test sensitivity is a function of the fetal fraction, read depth, and size of the fetal CNV and that at least one of the two false negatives is due to a low fetal fraction. The lack of an independent method for determining fetal fraction, especially for female fetuses, leads to uncertainty in test sensitivity, which currently has implications for this technique's future as a clinical diagnostic test. Furthermore, to be effective, NIPT must be able to detect chromosomal rearrangements across the whole genome for a very low false-positive rate. Because standard NIPT can only detect the majority of larger (>6 Mb) chromosomal rearrangements and requires knowledge of fetal fraction, we consider that it is not yet ready for routine clinical implementation.


Asunto(s)
Aberraciones Cromosómicas , Pruebas Genéticas/métodos , Diagnóstico Prenatal/normas , Aneuploidia , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Embarazo
15.
Am J Hum Genet ; 99(2): 430-6, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27476651

RESUMEN

SERPINS comprise a large and functionally diverse family of serine protease inhibitors. Here, we report three unrelated families with loss-of-function mutations in SERPINB8 in association with an autosomal-recessive form of exfoliative ichthyosis. Whole-exome sequencing of affected individuals from a consanguineous Tunisian family and a large Israeli family revealed a homozygous frameshift mutation, c.947delA (p.Lys316Serfs(∗)90), and a nonsense mutation, c.850C>T (p.Arg284(∗)), respectively. These two mutations are located in the last exon of SERPINB8 and, hence, would not be expected to lead to nonsense-mediated decay of the mRNA; nonetheless, both mutations are predicted to lead to loss of the reactive site loop of SERPINB8, which is crucial for forming the SERPINB8-protease complex. Using Sanger sequencing, a homozygous missense mutation, c.2T>C (p.Met1?), predicted to result in an N-terminal truncated protein, was identified in an additional family from UAE. Histological analysis of a skin biopsy from an individual homozygous for the variant p.Arg284(∗) showed disadhesion of keratinocytes in the lower epidermal layers plus decreased SERPINB8 levels compared to control. In vitro studies utilizing siRNA-mediated knockdown of SERPINB8 in keratinocytes demonstrated that in the absence of the protein, there is a cell-cell adhesion defect, particularly when cells are subjected to mechanical stress. In addition, immunoblotting and immunostaining revealed an upregulation of desmosomal proteins. In conclusion, we report mutations in SERPINB8 that are associated with exfoliative ichthyosis and provide evidence that SERPINB8 contributes to the mechanical stability of intercellular adhesions in the epidermis.


Asunto(s)
Adhesión Celular/genética , Ictiosis/genética , Mutación/genética , Serpinas/genética , Codón sin Sentido/genética , Consanguinidad , Exones/genética , Femenino , Mutación del Sistema de Lectura/genética , Genes Recesivos/genética , Homocigoto , Humanos , Lactante , Queratinocitos/metabolismo , Masculino , Mutación Missense/genética , Linaje , Turquía
16.
Am J Hum Genet ; 99(6): 1338-1352, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27839872

RESUMEN

Anterior segment dysgeneses (ASDs) comprise a spectrum of developmental disorders affecting the anterior segment of the eye. Here, we describe three unrelated families affected by a previously unclassified form of ASD. Shared ocular manifestations include bilateral iris hypoplasia, ectopia lentis, corectopia, ectropion uveae, and cataracts. Whole-exome sequencing and targeted Sanger sequencing identified mutations in CPAMD8 (C3 and PZP-like alpha-2-macroglobulin domain-containing protein 8) as the cause of recessive ASD in all three families. A homozygous missense mutation in the evolutionarily conserved alpha-2-macroglobulin (A2M) domain of CPAMD8, c.4351T>C (p. Ser1451Pro), was identified in family 1. In family 2, compound heterozygous frameshift, c.2352_2353insC (p.Arg785Glnfs∗23), and splice-site, c.4549-1G>A, mutations were identified. Two affected siblings in the third family were compound heterozygous for splice-site mutations c.700+1G>T and c.4002+1G>A. CPAMD8 splice-site mutations caused aberrant pre-mRNA splicing in vivo or in vitro. Intriguingly, our phylogenetic analysis revealed rodent lineage-specific CPAMD8 deletion, precluding a developmental expression study in mice. We therefore investigated the spatiotemporal expression of CPAMD8 in the developing human eye. RT-PCR and in situ hybridization revealed CPAMD8 expression in the lens, iris, cornea, and retina early in development, including strong expression in the distal tips of the retinal neuroepithelium that form the iris and ciliary body, thus correlating CPAMD8 expression with the affected tissues. Our study delineates a unique form of recessive ASD and defines a role for CPAMD8, a protein of unknown function, in anterior segment development, implying another pathway for the pathogenicity of ASD.


Asunto(s)
Segmento Anterior del Ojo/anomalías , Complemento C3/genética , Anomalías del Ojo/genética , Genes Recesivos/genética , Mutación , Inhibidor de Tripsina Pancreática de Kazal/genética , alfa-Macroglobulinas/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Segmento Anterior del Ojo/metabolismo , Niño , Preescolar , Complemento C3/química , Femenino , Humanos , Masculino , Persona de Mediana Edad , Inhibidor de Tripsina Pancreática de Kazal/química , Adulto Joven , alfa-Macroglobulinas/química
17.
Am J Hum Genet ; 99(1): 115-24, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27346687

RESUMEN

A substantial number of individuals with bone marrow failure (BMF) present with one or more extra-hematopoietic abnormality. This suggests a constitutional or inherited basis, and yet many of them do not fit the diagnostic criteria of the known BMF syndromes. Through exome sequencing, we have now identified a subgroup of these individuals, defined by germline biallelic mutations in DNAJC21 (DNAJ homolog subfamily C member 21). They present with global BMF, and one individual developed a hematological cancer (acute myeloid leukemia) in childhood. We show that the encoded protein associates with rRNA and plays a highly conserved role in the maturation of the 60S ribosomal subunit. Lymphoblastoid cells obtained from an affected individual exhibit increased sensitivity to the transcriptional inhibitor actinomycin D and reduced amounts of rRNA. Characterization of mutations revealed impairment in interactions with cofactors (PA2G4, HSPA8, and ZNF622) involved in 60S maturation. DNAJC21 deficiency resulted in cytoplasmic accumulation of the 60S nuclear export factor PA2G4, aberrant ribosome profiles, and increased cell death. Collectively, these findings demonstrate that mutations in DNAJC21 cause a cancer-prone BMF syndrome due to corruption of early nuclear rRNA biogenesis and late cytoplasmic maturation of the 60S subunit.


Asunto(s)
Anemia Aplásica/complicaciones , Anemia Aplásica/genética , Enfermedades de la Médula Ósea/complicaciones , Enfermedades de la Médula Ósea/genética , Proteínas del Choque Térmico HSP40/genética , Hemoglobinuria Paroxística/complicaciones , Hemoglobinuria Paroxística/genética , Mutación/genética , Neoplasias/complicaciones , Neoplasias/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/patología , Secuencia de Aminoácidos , Trastornos de Fallo de la Médula Ósea , Proliferación Celular , Forma de la Célula , Niño , Preescolar , Femenino , Proteínas del Choque Térmico HSP40/química , Humanos , Leucemia Mieloide Aguda/complicaciones , Leucemia Mieloide Aguda/genética , Masculino , Unión Proteica , ARN Ribosómico/biosíntesis
18.
Am J Hum Genet ; 98(1): 75-89, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26749309

RESUMEN

Congenital hereditary endothelial dystrophy 1 (CHED1) and posterior polymorphous corneal dystrophy 1 (PPCD1) are autosomal-dominant corneal endothelial dystrophies that have been genetically mapped to overlapping loci on the short arm of chromosome 20. We combined genetic and genomic approaches to identify the cause of disease in extensive pedigrees comprising over 100 affected individuals. After exclusion of pathogenic coding, splice-site, and copy-number variations, a parallel approach using targeted and whole-genome sequencing facilitated the identification of pathogenic variants in a conserved region of the OVOL2 proximal promoter sequence in the index families (c.-339_361dup for CHED1 and c.-370T>C for PPCD1). Direct sequencing of the OVOL2 promoter in other unrelated affected individuals identified two additional mutations within the conserved proximal promoter sequence (c.-274T>G and c.-307T>C). OVOL2 encodes ovo-like zinc finger 2, a C2H2 zinc-finger transcription factor that regulates mesenchymal-to-epithelial transition and acts as a direct transcriptional repressor of the established PPCD-associated gene ZEB1. Interestingly, we did not detect OVOL2 expression in the normal corneal endothelium. Our in vitro data demonstrate that all four mutated OVOL2 promoters exhibited more transcriptional activity than the corresponding wild-type promoter, and we postulate that the mutations identified create cryptic cis-acting regulatory sequence binding sites that drive aberrant OVOL2 expression during endothelial cell development. Our data establish CHED1 and PPCD1 as allelic conditions and show that CHED1 represents the extreme of what can be considered a disease spectrum. They also implicate transcriptional dysregulation of OVOL2 as a common cause of dominantly inherited corneal endothelial dystrophies.


Asunto(s)
Alelos , Distrofias Hereditarias de la Córnea/genética , Mutación , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Secuencia de Bases , ADN , Femenino , Humanos , Masculino , Linaje , Homología de Secuencia de Ácido Nucleico
19.
Am J Hum Genet ; 99(6): 1305-1315, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27889058

RESUMEN

Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families. REEP6 is a member of the REEP/Yop1 family of proteins that influence the structure of the endoplasmic reticulum but is relatively unstudied. The six variants identified include three frameshift variants, two missense variants, and a genomic rearrangement that disrupts exon 1. Human 3D organoid optic cups were used to investigate REEP6 expression and confirmed the expression of a retina-specific isoform REEP6.1, which is specifically affected by one of the frameshift mutations. Expression of the two missense variants (c.383C>T [p.Pro128Leu] and c.404T>C [p.Leu135Pro]) and the REEP6.1 frameshift mutant in cultured cells suggest that these changes destabilize the protein. Furthermore, CRISPR-Cas9-mediated gene editing was used to produce Reep6 knock-in mice with the p.Leu135Pro RP-associated variant identified in one RP-affected individual. The homozygous knock-in mice mimic the clinical phenotypes of RP, including progressive photoreceptor degeneration and dysfunction of the rod photoreceptors. Therefore, our study implicates REEP6 in retinal homeostasis and highlights a pathway previously uncharacterized in retinal dystrophy.


Asunto(s)
Proteínas del Ojo/genética , Genes Recesivos/genética , Proteínas de Transporte de Membrana/genética , Mutación/genética , Retinitis Pigmentosa/genética , Adolescente , Alelos , Animales , Niño , Preescolar , Proteínas del Ojo/química , Proteínas del Ojo/metabolismo , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Proteínas de la Membrana , Ratones , Mutación Missense/genética , Fenotipo , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/metabolismo , Adulto Joven
20.
Nature ; 498(7453): 232-5, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-23698362

RESUMEN

Genome-wide association studies (GWAS) have identified common variants of modest-effect size at hundreds of loci for common autoimmune diseases; however, a substantial fraction of heritability remains unexplained, to which rare variants may contribute. To discover rare variants and test them for association with a phenotype, most studies re-sequence a small initial sample size and then genotype the discovered variants in a larger sample set. This approach fails to analyse a large fraction of the rare variants present in the entire sample set. Here we perform simultaneous amplicon-sequencing-based variant discovery and genotyping for coding exons of 25 GWAS risk genes in 41,911 UK residents of white European origin, comprising 24,892 subjects with six autoimmune disease phenotypes and 17,019 controls, and show that rare coding-region variants at known loci have a negligible role in common autoimmune disease susceptibility. These results do not support the rare-variant synthetic genome-wide-association hypothesis (in which unobserved rare causal variants lead to association detected at common tag variants). Many known autoimmune disease risk loci contain multiple, independently associated, common and low-frequency variants, and so genes at these loci are a priori stronger candidates for harbouring rare coding-region variants than other genes. Our data indicate that the missing heritability for common autoimmune diseases may not be attributable to the rare coding-region variant portion of the allelic spectrum, but perhaps, as others have proposed, may be a result of many common-variant loci of weak effect.


Asunto(s)
Enfermedades Autoinmunes/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Sistemas de Lectura Abierta/genética , Exones/genética , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo , Humanos , Modelos Genéticos , Mutación/genética , Fenotipo , Tamaño de la Muestra , Reino Unido , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA