Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Dev Psychobiol ; 65(1): e22350, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36567658

RESUMEN

Methamphetamine use by women, even throughout pregnancy, is common. But there is limited knowledge about the effects in prenatally methamphetamine-exposed children. This study investigated how prenatal methamphetamine exposure in rats, via maternal i.v. self-administration, affected the sensitivity of adult offspring to methamphetamine in comparison with controls. The offspring were generated from dams either self-administering methamphetamine daily under limited-access conditions prior to and throughout pregnancy, or their respective saline-yoked control dams. Spontaneous and methamphetamine-induced locomotor activity was assessed in male and female offspring of both exposure groups after a range of methamphetamine doses. In a separate group of offspring, acquisition of i.v. methamphetamine self-administration, responding under fixed and progressive ratio schedules of methamphetamine reinforcement, and reinstatement of extinguished drug-seeking behavior were assessed. Methamphetamine dose-dependently increased locomotor activity in both exposure groups. However, methamphetamine-exposed males showed significantly enhanced locomotor activity compared with controls at 1 mg/kg, and methamphetamine-exposed females showed significantly enhanced locomotor activity compared with controls at 3.2 mg/kg. Methamphetamine-exposed offspring of both sexes acquired methamphetamine self-administration faster and showed overall higher levels of methamphetamine-induced reinstatement compared with controls. Taken together, these results indicate that prenatal methamphetamine exposure to relatively low levels alters methamphetamine sensitivity in male and female adult offspring.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Metanfetamina , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Ratas , Femenino , Masculino , Animales , Metanfetamina/farmacología , Ratas Sprague-Dawley , Refuerzo en Psicología , Autoadministración , Estimulantes del Sistema Nervioso Central/farmacología
2.
Alcohol Clin Exp Res ; 43(5): 791-802, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30861153

RESUMEN

BACKGROUND: Previous studies have investigated α1GABAA and α5GABAA receptor mechanisms in the behavioral effects of ethanol (EtOH) in monkeys. However, genetic studies in humans and preclinical studies with mutant mice suggest a role for α2GABAA and/or α3GABAA receptors in the effects of EtOH. The development of novel positive allosteric modulators (PAMs) with functional selectivity (i.e., selective efficacy) at α2GABAA and α3GABAA receptors allows for probing of these subtypes in preclinical models of the discriminative stimulus and reinforcing effects of EtOH in rhesus macaques. METHODS: In discrimination studies, subjects were trained to discriminate EtOH (2 g/kg, intragastrically) from water under a fixed-ratio (FR) schedule of food delivery. In oral self-administration studies, subjects were trained to self-administer EtOH (2% w/v) or sucrose (0.3 to 1% w/v) under an FR schedule of solution availability. RESULTS: In discrimination studies, functionally selective PAMs at α2GABAA and α3GABAA (HZ-166) or α3GABAA (YT-III-31) receptors substituted fully (maximum percentage of EtOH-lever responding ≥80%) for the discriminative stimulus effects of EtOH without altering response rates. Full substitution for EtOH also was engendered by a nonselective PAM (triazolam), an α5GABAA -preferring PAM (QH-ii-066) and a PAM at α2GABAA , α3GABAA , and α5GABAA receptors (L-838417). A partial (MRK-696) or an α1GABAA -preferring (zolpidem) PAM only engendered partial substitution (i.e., ~50 to 60% EtOH-lever responding). In self-administration studies, pretreatments with the functionally selective PAMs at α2GABAA and α3GABAA (XHe-II-053 and HZ-166) or α3GABAA (YT-III-31 and YT-III-271) receptors increased EtOH, but not sucrose, drinking at doses that had few, or no, observable sedative-motor effects. CONCLUSIONS: Our results confirm prior findings regarding the respective roles of α1GABAA and α5GABAA receptors in the discriminative stimulus effects of EtOH and, further, suggest a key facilitatory role for α3GABAA and potentially α2GABAA receptors in several abuse-related effects of EtOH in monkeys. Moreover, they reveal a potential role for these latter subtypes in EtOH's sedative effects.


Asunto(s)
Alcoholismo/psicología , Aprendizaje Discriminativo/fisiología , Etanol/administración & dosificación , Subunidades de Proteína/fisiología , Receptores de GABA-A/fisiología , Alcoholismo/tratamiento farmacológico , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Aprendizaje Discriminativo/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Agonistas de Receptores de GABA-A/administración & dosificación , Antagonistas de Receptores de GABA-A/administración & dosificación , Macaca mulatta , Masculino , Subunidades de Proteína/agonistas , Subunidades de Proteína/antagonistas & inhibidores , Autoadministración
3.
Mol Biol Evol ; 34(7): 1629-1643, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28333316

RESUMEN

The mu opioid receptor is involved in many natural processes including stress response, pleasure, and pain. Mutations in the gene also have been associated with opiate and alcohol addictions as well as with responsivity to medication targeting these disorders. Two common and mutually exclusive polymorphisms have been identified in humans, A118G (N40D), found commonly in non-African populations, and C17T (V6A), found almost exclusively in African populations. Although A118G has been studied extensively for associations and in functional assays, C17T is much less well understood. In addition to a parallel polymorphism previously identified in rhesus macaques (Macaca mulatta), C77G (P26R), resequencing in additional non-human primate species identifies further common variation: C140T (P47L) in cynomolgus macaques (Macaca fascicularis), G55C (D19H) in vervet monkeys (Chlorocebus aethiops sabeus), A111T (L37F) in marmosets (Callithrix jacchus), and C55T (P19S) in squirrel monkeys (Saimiri boliviensis peruviensis). Functional effects on downstream signaling are observed for each of these variants following treatment with the endogenous agonist ß-endorphin and the exogenous agonists morphine, DAMGO ([d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin), and fentanyl. In addition to demonstrating the importance of functional equivalency in reference to population variation for minority health, this also shows how common evolutionary pressures have produced similar phenotypes across species, suggesting a shared response to environmental needs and perhaps elucidating the mechanism by which these organism-environment interactions are mediated physiologically and molecularly. These studies set the stage for future investigations of shared functional polymorphisms across species as a new genetic tool for translational research.


Asunto(s)
Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Animales , Evolución Biológica , Evolución Molecular , Humanos , Macaca mulatta/genética , Polimorfismo Genético/genética , Primates/genética , Selección Genética/genética
4.
J Pharmacol Exp Ther ; 366(1): 145-157, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29720564

RESUMEN

In nonhuman primates we tested a new set of behavioral categories for observable sedative effects using pediatric anesthesiology classifications as a basis. Using quantitative behavioral observation techniques in rhesus monkeys, we examined the effects of alprazolam and diazepam (nonselective benzodiazepines), zolpidem (preferential binding to α1 subunit-containing GABAA receptors), HZ-166 (8-ethynyl-6-(2'-pyridine)-4H-2,5,10b-triaza-benzo[e]azulene-3-carboxylic acid ethyl ester; functionally selective with relatively high intrinsic efficacy for α2 and α3 subunit-containing GABAA receptors), MRK-696 [7-cyclobutyl-6-(2-methyl-2H-1,2,4-triazol-2-ylmethoxy)-3-(2-flurophenyl)-1,2,4-triazolo(4,3-b)pyridazine; no selectivity but partial intrinsic activity], and TPA023B 6,2'-diflouro-5'-[3-(1-hydroxy-1-methylethyl)imidazo[1,2-b][1,2,4]triazin-7-yl]biphenyl-2-carbonitrile; partial intrinsic efficacy and selectivity for α2, α3, α5 subunit-containing GABAA receptors]. We further examined the role of α1 subunit-containing GABAA receptors in benzodiazepine-induced sedative effects by pretreating animals with the α1 subunit-preferring antagonist ß-carboline-3-carboxylate-t-butyl ester (ßCCT). Increasing doses of alprazolam and diazepam resulted in the emergence of observable ataxia, rest/sleep posture, and moderate and deep sedation. In contrast, zolpidem engendered dose-dependent observable ataxia and deep sedation but not rest/sleep posture or moderate sedation, and HZ-166 and TPA023 induced primarily rest/sleep posture. MRK-696 induced rest/sleep posture and observable ataxia. Zolpidem, but no other compounds, significantly increased tactile/oral exploration. The sedative effects engendered by alprazolam, diazepam, and zolpidem generally were attenuated by ßCCT pretreatments, whereas rest/sleep posture and suppression of tactile/oral exploration were insensitive to ßCCT administration. These data suggest that α2/3-containing GABAA receptor subtypes unexpectedly may mediate a mild form of sedation (rest/sleep posture), whereas α1-containing GABAA receptors may play a role in moderate/deep sedation.


Asunto(s)
Benzodiazepinas/farmacología , Hipnóticos y Sedantes/farmacología , Receptores de GABA-A/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Femenino , Macaca mulatta , Masculino
5.
Handb Exp Pharmacol ; 248: 3-27, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29204713

RESUMEN

Ethanol's reinforcing and subjective effects, as well as its ability to induce relapse, are powerful factors contributing to its widespread use and abuse. A significant mediator of these behavioral effects is the GABAA receptor system. GABAA receptors are the target for γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the CNS. Structurally, they are pentameric, transmembrane chloride ion channels comprised of subunits from at least eight different families of distinct proteins. The contribution of different GABAA subunits to ethanol's diverse abuse-related effects is not clear and remains an area of research focus. This chapter details the clinical and preclinical findings supporting roles for different α, ß, γ, and δ subunit-containing GABAA receptors in ethanol's reinforcing, subjective/discriminative stimulus, and relapse-inducing effects. The reinforcing properties of ethanol have been studied the most systematically, and convergent preclinical evidence suggests a key role for the α5 subunit in those effects. Regarding ethanol's subjective/discriminative stimulus effects, clinical and genetic findings support a primary role for the α2 subunit, whereas preclinical evidence implicates the α5 subunit. At present, too few studies investigating ethanol relapse exist to make any solid conclusions regarding the role of specific GABAA subunits in this abuse-related effect.


Asunto(s)
Alcoholismo , Etanol , Receptores de GABA-A/fisiología , Humanos , Ácido gamma-Aminobutírico
6.
Handb Exp Pharmacol ; 248: 615, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30810860

RESUMEN

The chemical name appearing in the first column of Table 1 on the 3rd row from bottom of the table is wrong.

7.
Behav Pharmacol ; 28(5): 386-393, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28537943

RESUMEN

Benzodiazepines (BZs) are relatively safe when administered alone. However, these drugs can produce severe side effects when coadministered with ethanol. Despite these adverse consequences, rates of concurrent BZ and ethanol misuse are increasing, and it is unclear whether this behavior is maintained by an enhanced reinforcing effect of the mixture. To address this issue, the current study compared the reinforcing effectiveness of sucrose solutions mixed with midazolam, ethanol, or both. Eight male rats were trained to orally self-administer solutions of either sucrose (S), sucrose+midazolam (SM), sucrose+ethanol (SE), or sucrose+midazolam+ethanol (SME). The response requirement was increased between sessions until the number of reinforcers earned was zero and the relationship between response requirement and reinforcers earned was analyzed using the exponential model of demand. Although baseline intake was similar across drug conditions, consumption of SM was least affected by increases in cost, indicating that it possessed the highest reinforcing effectiveness (i.e. least elastic). The reinforcing effectiveness of S, SE, and SME did not differ significantly. The finding that the reinforcing effectiveness of the SME was less than that of SM does not support the supposition that BZ and ethanol coadministration is maintained by a higher reinforcing effectiveness of the mixture.


Asunto(s)
Midazolam/farmacología , Consumo de Bebidas Alcohólicas/metabolismo , Animales , Benzodiazepinas , Etanol/administración & dosificación , Etanol/metabolismo , Etanol/farmacología , Masculino , Midazolam/administración & dosificación , Midazolam/metabolismo , Ratas , Esquema de Refuerzo , Refuerzo en Psicología , Autoadministración , Sacarosa/administración & dosificación , Sacarosa/metabolismo
8.
J Neurogenet ; 28(1-2): 98-111, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24702501

RESUMEN

Excessive activation of the N-methyl-d-aspartate (NMDA) receptor and the neurotransmitter dopamine (DA) mediate neurotoxicity and neurodegeneration under many neurological conditions, including Huntington's disease (HD), an autosomal dominant neurodegenerative disease characterized by the preferential loss of medium spiny projection neurons (MSNs) in the striatum. PSD-95 is a major scaffolding protein in the postsynaptic density (PSD) of dendritic spines, where a classical role for PSD-95 is to stabilize glutamate receptors at sites of synaptic transmission. Our recent studies indicate that PSD-95 also interacts with the D1 DA receptor localized in spines and negatively regulates spine D1 signaling. Moreover, PSD-95 forms ternary protein complexes with D1 and NMDA receptors, and plays a role in limiting the reciprocal potentiation between both receptors from being escalated. These studies suggest a neuroprotective role for PSD-95. Here we show that mice lacking PSD-95, resulting from genetic deletion of the GK domain of PSD-95 (PSD-95-ΔGK mice), sporadically develop progressive neurological impairments characterized by hypolocomotion, limb clasping, and loss of DARPP-32-positive MSNs. Electrophysiological experiments indicated that NMDA receptors in mutant MSNs were overactive, suggested by larger, NMDA receptor-mediated miniature excitatory postsynaptic currents (EPSCs) and higher ratios of NMDA- to AMPA-mediated corticostriatal synaptic transmission. In addition, NMDA receptor currents in mutant cortical neurons were more sensitive to potentiation by the D1 receptor agonist SKF81297. Finally, repeated administration of the psychostimulant cocaine at a dose regimen not producing overt toxicity-related phenotypes in normal mice reliably converted asymptomatic mutant mice to clasping symptomatic mice. These results support the hypothesis that deletion of PSD-95 in mutant mice produces concomitant overactivation of both D1 and NMDA receptors that makes neurons more susceptible to NMDA excitotoxicity, causing neuronal damage and neurological impairments. Understanding PSD-95-dependent neuroprotective mechanisms may help elucidate processes underlying neurodegeneration in HD and other neurological disorders.


Asunto(s)
Cuerpo Estriado/patología , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Guanilato-Quinasas/deficiencia , Proteínas de la Membrana/deficiencia , Trastornos del Movimiento/genética , Enfermedades Neurodegenerativas/genética , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Factores de Edad , Animales , Benzazepinas/farmacología , Recuento de Células , Homólogo 4 de la Proteína Discs Large , Agonistas de Dopamina/farmacología , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Regulación de la Expresión Génica/genética , Guanilato-Quinasas/genética , Magnesio/farmacología , Potenciales de la Membrana/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Actividad Motora/genética , Enfermedades Neurodegenerativas/patología , Neuronas/fisiología
9.
Alcohol Clin Exp Res ; 38(4): 1108-17, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24330519

RESUMEN

BACKGROUND: Alcohol potentiates GABAergic neurotransmission via action at the GABAA receptor. α1 subunit-containing GABAA receptors have been implicated as mediators, in part, of the behavioral and abuse-related effects of alcohol in rodents. METHODS: We systematically investigated the effects of 1 α1-preferring benzodiazepine agonist, zolpidem, and 2 antagonists, ß-carboline-3-carboxylate-tert-butyl ester (ßCCT) and 3-propoxy-ß-carboline hydrochloride (3-PBC), on oral self-administration of alcohol (2% w/v) or sucrose solution and observable behavior in rhesus macaques. We compared these effects to those of the nonselective benzodiazepine agonist triazolam, antagonist flumazenil, and inverse agonist ß-carboline carboxylate (ßCCE). RESULTS: Alcohol and sucrose solutions maintained reliable baseline drinking behavior across the study. The α1-preferring compounds did not affect intake, number of sipper extensions, or blood alcohol levels (BALs) at any of the doses tested. Zolpidem, ßCCT, and 3-PBC increased latency to first sipper extension in animals self-administering alcohol, but not sucrose, solution. Triazolam exerted biphasic effects on alcohol-drinking behavior, increasing intake at low doses but decreasing BAL and increasing latency at higher doses. At doses higher than those effective in alcohol-drinking animals, triazolam increased sucrose intake and latency. Flumazenil nonsystematically increased number of extensions for alcohol but decreased BAL, with no effects on sucrose drinking. ßCCE decreased sipper extensions for alcohol and increased latency for first sucrose sipper extension, but full dose-effect relationships could not be determined due to seizures at higher doses. CONCLUSIONS: Alcohol-drinking animals appeared more sensitive to the effects of GABAergic compounds on drinking behavior. However, these results do not support a strong contribution of α1GABAA receptors to the reinforcing effects of alcohol in primates.


Asunto(s)
Consumo de Bebidas Alcohólicas/psicología , Modelos Animales , Subunidades de Proteína/fisiología , Receptores de GABA-A/fisiología , Consumo de Bebidas Alcohólicas/prevención & control , Animales , Etanol/administración & dosificación , Agonistas de Receptores de GABA-A/farmacología , Agonistas de Receptores de GABA-A/uso terapéutico , Antagonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/uso terapéutico , Macaca mulatta , Masculino , Subunidades de Proteína/agonistas , Subunidades de Proteína/antagonistas & inhibidores , Autoadministración
10.
medRxiv ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37732207

RESUMEN

Contextual triggers are significant factors contributing to relapse in substance use disorders (SUD). Emerging evidence points to a critical role of extracellular matrix (ECM) molecules as mediators of reward memories. Chondroitin sulfate proteoglycans (CSPGs) are a subset of ECM molecules that form perineuronal nets (PNN) around inhibitory neurons. PNNs restrict synaptic connections and help maintain synapses. Rodent models suggest that modulation of PNNs may strengthen contextual reward memories in SUD. However, there is currently a lack of information regarding PNNs in the hippocampus of people with SUD as well as how comorbidity with major depressive disorder (MDD) may affect PNNs. We used postmortem hippocampal tissues from cohorts of human and nonhuman primates with or without chronic alcohol use to test the hypothesis that PNNs are increased in subjects with SUD. We used histochemical labeling and quantitative microscopy to examine PNNs, and qRT-PCR to examine gene expression for ECM molecules, synaptic markers and related markers. We identified increased densities of PNNs and CSPG-labeled glial cells in SUD, coinciding with decreased expression of the ECM protease matrix metalloproteinase 9 (Mmp9), and increased expression for the excitatory synaptic marker vesicle associated membrane protein 2 (Vamp2). Similar increases in PNNs were observed in monkeys with chronic alcohol self-administration. Subjects with MDD displayed changes opposite to SUD, and subjects with SUD and comorbid MDD had minimal changes in any of the outcome measures examined. Our findings demonstrate that PNNs are increased in SUD, possibly contributing to stabilizing contextual reward memories as suggested by preclinical studies. Our results also point to a previously unsuspected role for CSPG expression in glial cells in SUD. Evidence for increased hippocampal PNNs in SUD suggests that targeting PNNs to weaken contextual reward memories is a promising therapeutic approach for SUD, however comorbidity with MDD is a significant consideration.

11.
Transl Psychiatry ; 14(1): 115, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402197

RESUMEN

Contextual triggers are significant factors contributing to relapse in substance use disorders (SUD). Emerging evidence points to a critical role of extracellular matrix (ECM) molecules as mediators of reward memories. Chondroitin sulfate proteoglycans (CSPGs) are a subset of ECM molecules that form perineuronal nets (PNN) around inhibitory neurons. PNNs restrict synaptic connections and help maintain synapses. Rodent models suggest that modulation of PNNs may strengthen contextual reward memories in SUD. However, there is currently a lack of information regarding PNNs in the hippocampus of people with SUD as well as how comorbidity with major depressive disorder (MDD) may affect PNNs. We used postmortem hippocampal tissues from cohorts of human and nonhuman primates with or without chronic alcohol use to test the hypothesis that PNNs are increased in subjects with SUD. We used histochemical labeling and quantitative microscopy to examine PNNs, and qRT-PCR to examine gene expression for ECM molecules, synaptic markers and related markers. We identified increased densities of PNNs and CSPG-labeled glial cells in SUD, coinciding with decreased expression of the ECM protease matrix metalloproteinase 9 (Mmp9), and increased expression for the excitatory synaptic marker vesicle associated membrane protein 2 (Vamp2). Similar increases in PNNs were observed in monkeys with chronic alcohol self-administration. Subjects with MDD displayed changes opposite to SUD, and subjects with SUD and comorbid MDD had minimal changes in any of the outcome measures examined. Our findings demonstrate that PNNs are increased in SUD, possibly contributing to stabilizing contextual reward memories as suggested by preclinical studies. Our results also point to a previously unsuspected role for CSPG expression in glial cells in SUD. Evidence for increased hippocampal PNNs in SUD suggests that targeting PNNs to weaken contextual reward memories is a promising therapeutic approach for SUD, however comorbidity with MDD is a significant consideration.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos Relacionados con Sustancias , Animales , Humanos , Trastorno Depresivo Mayor/metabolismo , Matriz Extracelular/metabolismo , Neuronas/metabolismo , Hipocampo
12.
Alcohol Clin Exp Res ; 37(4): 624-34, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23126673

RESUMEN

BACKGROUND: Alcohol's ability to potentiate the activity of γ-aminobutyric acid (GABA) at GABAA receptors has been implicated as a key mechanism underlying the behavioral effects of alcohol. The complex molecular biology of these receptors raises the possibility that particular receptor subtypes may play unique roles in alcohol's abuse-related effects and that subtype-selective ligands with therapeutic specificity against alcohol might be developed. This study evaluated the capacity of α5GABAA receptor ligands to alter selectively the reinforcing effects of alcohol. METHODS: Two groups of rhesus monkeys were trained to orally self-administer alcohol or sucrose under fixed-ratio schedules and limited daily access conditions. In addition, following daily self-administration sessions, the behavior of each monkey was scored for both species-typical and drug-induced behaviors. RESULTS: Concentrations of 1 to 6% alcohol maintained self-administration above water levels, engendered pharmacologically relevant blood alcohol levels ranging from 90 to 160 mg/dl, and produced changes in behavior typical of alcohol intoxication. Concentrations of 0.3 to 3% sucrose also reliably maintained self-administration. The α5GABAA receptor agonist QH-ii-066 enhanced and the α5GABAA receptor inverse agonist L-655,708 inhibited alcohol, but not sucrose drinking. The changes in alcohol drinking could be reversed with the α5GABAA receptor antagonist XLi-093. However, L-655,708 increased yawning in both alcohol and sucrose drinkers, possibly indicative of an anxiogenic effect. CONCLUSIONS: These findings suggest a prominent and specific role for α5GABAA receptor mechanisms in the reinforcing effects of alcohol. Moreover, these results suggest that α5GABAA receptors may represent a novel pharmacological target for the development of medications to reduce drinking. Of ligands modulating this receptor, α5GABAA receptor inverse agonists may hold the most promise as alcohol pharmacotherapies.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Consumo de Bebidas Alcohólicas/fisiopatología , Subunidades de Proteína/fisiología , Receptores de GABA-A/fisiología , Consumo de Bebidas Alcohólicas/tratamiento farmacológico , Animales , Agonismo Inverso de Drogas , Agonistas de Receptores de GABA-A/uso terapéutico , Antagonistas de Receptores de GABA-A/farmacología , Macaca mulatta , Masculino , Subunidades de Proteína/agonistas , Subunidades de Proteína/antagonistas & inhibidores , Autoadministración
13.
Front Psychiatry ; 14: 1142531, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252149

RESUMEN

Introduction: Benzodiazepines (BZs) are prescribed as anxiolytics, but their use is limited by side effects including abuse liability and daytime drowsiness. Neuroactive steroids are compounds that, like BZs, modulate the effects of GABA at the GABAA receptor. In a previous study, combinations of the BZ triazolam and neuroactive steroid pregnanolone produced supra-additive (i.e., greater than expected effects based on the drugs alone) anxiolytic effects but infra-additive (i.e., lower than expected effects based on the drugs alone) reinforcing effects in male rhesus monkeys, suggestive of an improved therapeutic window. Methods: Female rhesus monkeys (n=4) self-administered triazolam, pregnanolone, and triazolam-pregnanolone combinations intravenously under a progressive-ratio schedule. In order to assess characteristic sedative-motor effects of BZ-neuroactive steroid combinations, female rhesus monkeys (n=4) were administered triazolam, pregnanolone, and triazolam-pregnanolone combinations. Trained observers, blinded to condition, scored the occurrence of species-typical and drug-induced behaviors. Results: In contrast to our previous study with males, triazolam-pregnanolone combinations had primarily supra-additive reinforcing effects in three monkeys but infra-additive reinforcing effects in one monkey. Scores for deep sedation (i.e., defined as atypical loose-limbed posture, eyes closed, does not respond to external stimuli) and observable ataxia (any slip, trip, fall, or loss of balance) were significantly increased by both triazolam and pregnanolone. When combined, triazolam-pregnanolone combinations had supra-additive effects for inducing deep sedation, whereas observable ataxia was attenuated, likely due to the occurrence of robust sedative effects. Discussion: These results suggest that significant sex differences exist in self-administration of BZ-neuroactive steroid combinations, with females likely to show enhanced sensitivity to reinforcing effects compared with males. Moreover, supra-additive sedative effects occurred for females, demonstrating a higher likelihood of this adverse effect when these drug classes are combined.

14.
Psychopharmacology (Berl) ; 240(12): 2561-2571, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37608193

RESUMEN

RATIONALE: Benzodiazepines are known to evoke changes in cortical electrophysiological activity that can be correlated with action at distinct γ-aminobutyric acid type A (GABAA) receptor subtypes. OBJECTIVES: We used electroencephalography (EEG) paired with electromyography (EMG) to evaluate the role of α1 subunit-containing GABAA receptors (α1GABAARs) in benzodiazepine-induced sedation and changes in EEG band frequencies during the active phase of the light/dark cycle. METHODS: Male Sprague-Dawley rats (N = 4/drug) were surgically instrumented with EEG/EMG electrodes. The rats were injected i.p. with zolpidem, an α1GABAAR-preferring compound, or L-838,417, which has selective efficacy for α2/3/5 subunit-containing GABAARs (i.e., α1GABAAR-sparing compound), in comparison with the non-selective benzodiazepine, triazolam. RESULTS: All ligands evaluated induced changes in sleep-wake states during the active phase consistent with an increase in slow-wave sleep (SWS). The degree of SWS increase appeared to be related to the magnitude of delta power band changes induced by the ligands, with the strongest effects engendered by the α1GABAAR-preferring drug zolpidem and the weakest effects by the α1GABAAR-sparing compound, L-838,417. Consistent with other research, a selective increase in beta band power was observed with L-838,417, which may be associated with α2GABAAR-mediated anxiolysis. CONCLUSIONS: Overall, these findings support the establishment of pharmaco-EEG "signatures" for identifying subtype-selective GABAA modulators in vivo.


Asunto(s)
Benzodiazepinas , Receptores de GABA-A , Ratas , Masculino , Animales , Zolpidem , Ratas Sprague-Dawley , Benzodiazepinas/farmacología , Receptores de GABA-A/fisiología , Electroencefalografía , Ácido gamma-Aminobutírico
15.
Drug Alcohol Depend ; 243: 109735, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36549228

RESUMEN

BACKGROUND: Cue-exposure therapy (CET) is an effective approach for anxiety-related disorders, but its effectiveness for substance use disorders is less clear. One potential means of improving CET outcomes is to include a cognitive-enhancing pharmacotherapy. This study evaluated d-cycloserine (DCS) and RY-023, putative cognitive enhancers targeting glutamate and GABA systems, respectively, in a monkey model of CET for alcohol use disorder. METHODS: Male rhesus monkeys (n = 4) underwent multiple cycles of the CET procedure. During baseline (Phase 1), monkeys self-administered an ethanol solution under a fixed-ratio schedule and limited access conditions such that every 5th response in a 3-h session resulted in 30-s access to a drinking spout and a change in ethanol-paired cue lights from white to red. Behavior then was extinguished (Phase 2) by omitting the ethanol solution yet retaining the ethanol-paired stimulus lights. Monkeys also received injections of vehicle, DCS (3 mg/kg), a partial agonist at the glycine modulatory site on glutamatergic NMDA receptors, or the α5GABAA receptor-selective inverse agonist RY-023 (0.03 or 0.3 mg/kg). Once responding declined, monkeys underwent a cue reactivity test (Phase 3), and then returned to self-administration the following day to assess reacquisition (Phase 4). RESULTS: Through multiple cycles, self-administration remained stable. Compared to vehicle, DCS facilitated extinction of ethanol seeking (Phase 2) and delayed reacquisition of ethanol self-administration (Phase 4). In contrast, RY-023 facilitated extinction (Phase 2) and reduced cue reactivity (Phase 3). CONCLUSIONS: Adjunctive pharmacotherapy can improve CET outcomes, but the choice of pharmacotherapy should be dependent on the outcome of interest.


Asunto(s)
Alcoholismo , Terapia Implosiva , Nootrópicos , Animales , Masculino , Alcoholismo/tratamiento farmacológico , Alcoholismo/psicología , Macaca mulatta , Nootrópicos/farmacología , Nootrópicos/uso terapéutico , Señales (Psicología) , Agonismo Inverso de Drogas , Extinción Psicológica , Cicloserina/farmacología , Cicloserina/uso terapéutico , Etanol/farmacología , Autoadministración
16.
Drug Alcohol Depend ; 252: 110953, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734282

RESUMEN

BACKGROUND: Recent preclinical studies have investigated the atypical kappa-opioid receptor (KOR) agonist, nalfurafine, as a co-formulary with mu-opioid receptor (MOR) agonists as a potential deterrent for misuse. However, no study has investigated effects of nalfurafine combined with a MOR agonist using an oral route of administration. The objective of the current study was to measure behavioral effects of orally administered oxycodone and nalfurafine, alone and combined, in rhesus monkeys using a quantitative behavioral observation procedure. METHODS: Adult male rhesus monkeys (N=5) were orally administered vehicle, oxycodone (0.56-1.8mg/kg), nalfurafine (0.001-0.0056mg/kg), or mixtures (1.0mg/kg oxycodone/0.001-0.0056mg/kg nalfurafine) in a Jell-O vehicle at multiple timepoints (10-320min). Species-typical and drug-induced behaviors were recorded by observers blinded to conditions. RESULTS: Oxycodone alone significantly increased scratch and face-rub behaviors without affecting other behaviors. Nalfurafine decreased baseline levels of scratch without affecting other behaviors, and oxycodone-nalfurafine combinations resulted in reduced oxycodone-induced scratching at a dose (0.001mg/kg) that did not produce sedation-like effects. Oxycodone combined with larger nalfurafine doses (0.0032-0.0056mg/kg) also reduced oxycodone induced scratch that were accompanied with sedation-like effects (i.e., increased lip droop). CONCLUSIONS: Nalfurafine was orally active in rhesus monkeys, and it reduced oxycodone-induced pruritus at a dose that did not produce sedation-like effects that are commonly observed with prototypical KOR agonists. Combinations of low doses of nalfurafine with MOR agonists such as oxycodone may be well-tolerated by humans who are prescribed MOR agonists for the treatment of pain.


Asunto(s)
Oxicodona , Receptores Opioides kappa , Humanos , Animales , Masculino , Oxicodona/farmacología , Macaca mulatta , Receptores Opioides kappa/agonistas , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Administración Oral
17.
J Pharmacol Exp Ther ; 343(1): 214-24, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22815535

RESUMEN

Within the group I family of metabotropic glutamate receptors (mGluRs), substantial evidence points to a role for mGluR5 mechanisms in cocaine's abuse-related behavioral effects, but less is understood about the contribution of mGluR1, which also belongs to the group I mGluR family. The selective mGluR1 antagonist JNJ16259685 [(3,4-dihydro-2H-pyrano-[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone] was used to investigate the role of mGluR1 in the behavioral effects of cocaine and methamphetamine. In drug discrimination experiments, squirrel monkeys were trained to discriminate cocaine from saline by using a two-lever, food-reinforced operant procedure. JNJ16259685 (0.56 mg/kg) pretreatments significantly attenuated cocaine's discriminative stimulus effects and the cocaine-like discriminative stimulus effects of methamphetamine. In monkeys trained to self-administer cocaine or methamphetamine under a second-order schedule of intravenous drug injection, JNJ16259685 (0.56 mg/kg) significantly reduced drug-reinforced responding, resulting in a downward displacement of dose-response functions. In reinstatement studies, intravenous priming with cocaine accompanied by restoration of a cocaine-paired stimulus reinstated extinguished cocaine-seeking behavior, which was significantly attenuated by JNJ16259685 (0.56 mg/kg). Finally, in experiments involving food rather than drug self-administration, cocaine and methamphetamine increased the rate of responding, and the rate-increasing effects of both psychostimulants were significantly attenuated by JNJ16259685 (0.3 mg/kg). At the doses tested, JNJ16259685 did not significantly suppress food-reinforced behavior (drug discrimination or fixed-interval schedule of food delivery), but did significantly reduce species-typical locomotor activity in observational studies. To the extent that the psychostimulant-antagonist effects of JNJ16259685 are independent of motor function suppression, further research is warranted to investigate other mGluR1 antagonists for potential therapeutic value in psychostimulant abuse.


Asunto(s)
Conducta Adictiva/prevención & control , Cocaína/administración & dosificación , Metanfetamina/administración & dosificación , Quinolinas/farmacología , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/fisiología , Animales , Conducta Adictiva/psicología , Relación Dosis-Respuesta a Droga , Masculino , Quinolinas/uso terapéutico , Saimiri , Autoadministración , Resultado del Tratamiento
18.
Pharmacol Biochem Behav ; 217: 173394, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35513117

RESUMEN

Kappa-opioid receptor (KOR) agonists have been studied as potential treatments for pain, pruritus, and substance-use disorders, but prototypical KOR agonists produce side-effects like dysphoria and sedation. Atypical KOR agonists that exhibit G-protein biased signaling at the KOR have been reported to produce therapeutic-like effects with fewer or reduced side effects relative to prototypical KOR agonists. In the current report, behavioral profiles were determined using a behavioral scoring system that was modified to quantify drug-induced behaviors in nonhuman primates (NHPs). Profiles were determined for a prototypical and two biased KOR agonists, alone and combined with the mu-opioid receptor (MOR) agonist, oxycodone. Five adult male rhesus monkeys implanted with intravenous catheters were administered a range of doses of the KOR agonist, U50-488H (0.01-0.1 mg/kg) and the biased KOR agonists, nalfurafine (0.0001-0.001 mg/kg) and triazole 1.1 (0.32-1.0 mg/kg), alone and combined with the MOR agonist, oxycodone (0.01-0.32 mg/kg). In addition, the largest triazole 1.1 dose tested (1.0 mg/kg) was administered in time-course determinations (0-56 min), alone and combined with oxycodone (0.1 mg/kg). U50-488H and nalfurafine produced sedative-like and motor-impairing effects. Triazole 1.1 had a milder side-effect profile, in some instances producing sedative-like effects but to a lesser degree compared with the other KOR agonists, particularly for lip droop and rest/sleep posture. All KOR agonists reduced oxycodone-induced scratch, but nalfurafine produced behavior-disrupting and sedative-like effects when combined with oxycodone that were not observed with triazole 1.1. The duration of triazole 1.1's behavioral effects was relatively short, dissipating entirely by 56 min. Our results suggest that KOR agonists with comparable pharmacology to triazole 1.1 may be useful therapeutics with reduced side-effect profiles, and the mechanisms conferring these benefits may be attributed to factors other than G-protein bias.


Asunto(s)
Analgésicos Opioides , Oxicodona , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Animales , Proteínas de Unión al GTP , Hipnóticos y Sedantes , Macaca mulatta/metabolismo , Masculino , Morfinanos , Oxicodona/farmacología , Receptores Opioides kappa/agonistas , Compuestos de Espiro , Triazoles/farmacología
19.
J Am Assoc Lab Anim Sci ; 61(2): 165-172, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35012705

RESUMEN

Rhesus monkeys are naturally social animals, and behavioral management strategies have focused on promoting pairhousing in laboratory settings as an alternative to individual or group housing. In humans, co-sleeping can have a major impact on bed partners' sleep, raising the possibility that pair-housing also may influence sleep parameters in monkeys. In the present study, we investigated if pair-housing would impact home-cage partner's sleep in female rhesus monkeys, and if nighttime separation using socialization panels would alter this pattern. Sleep parameters of 10 experimentally naïve adult female rhesus monkeys (5 pairs) were evaluated for 7 consecutive days using actigraphy monitors attached to primate collars. Paired animals then were separated by socialization panels during the night, and sleep-associated measures were evaluated for 7 consecutive days. The data showed that sleep efficiency was significantly lower when monkeys were pairhoused as compared with when they were separated. On the nights when subjects were pair-housed, a positive correlation was detected for sleep measures (both sleep latency and efficiency) of both members of a pair (R2's = 0.16-0.5), suggesting that pair-housing influences sleep quality. On nights when subjects were separated, no correlations were observed for sleep measures between members of the pairs (R2's = 0.004-0.01), suggesting that when separated, the home-cage partner's sleep no longer influenced the partner's sleep. Our results indicate that pair-housing has a strong impact on the home-cage partner's sleep, and that this pattern can be prevented by nighttime separation using socialization panels. Studies evaluating sleep in pair-housed monkeys should consider the effects that the partner's sleep may have on the subject's sleep. Sleep is a biologic phenomenon and experimental outcome that affects physical and behavioral health and altered sleep due to pair-housing may affect a range of research outcomes.


Asunto(s)
Actigrafía , Sueño , Actigrafía/métodos , Animales , Femenino , Vivienda para Animales , Humanos , Macaca mulatta
20.
Pharmacol Biochem Behav ; 205: 173188, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33845082

RESUMEN

Clinical studies suggest that sleep impairment is a barrier to successful treatment in alcohol use disorder (AUD) patients, with sleep disruption associated with relapse to alcohol taking. To date, no preclinical study has evaluated the relationship between impaired sleep and alcohol relapse. In the present study, we used a self-administration model to investigate the effects of sleep restriction on reinstatement induced by alcohol-paired environmental cues. Using a sucrose fading protocol, male Wistar rats (N = 8) were trained to self-administer alcohol under a fixed-ratio 2 schedule of alcohol delivery such that completion of every second response resulted in the delivery of the alcohol solution and activation of the alcohol-paired cue light. Once self-administration was stable, behavior was extinguished by omitting delivery of the alcohol solution and the alcohol-paired cues. When responding reached low, stable levels, alcohol seeking was induced by re-presentation of the alcohol-paired cues but with no alcohol solution available for self-administration. To evaluate the effects of sleep restriction on cue-induced alcohol seeking, reinstatement tests were conducted after 6-h of total (slow wave + rapid eye movement [REM]) sleep restriction using the gentle handling method or after 6-h of REM sleep-only restriction using the flower pot method. Relevant control conditions also were evaluated. The results showed that acute restriction of total sleep, but not REM sleep primarily, significantly augmented cue-induced reinstatement of alcohol seeking. This increase was specific to total sleep restriction conditions and cannot be attributed to differences in alcohol intake, responding, or days to extinction. Our findings imply that acute slow wave sleep restriction is necessary and/or sufficient for the enhancement of cue-induced alcohol seeking and, further, suggest that decreased slow wave sleep in AUD patients places individuals at a unique risk for relapse.


Asunto(s)
Consumo de Bebidas Alcohólicas/psicología , Condicionamiento Operante/efectos de los fármacos , Etanol/farmacología , Extinción Psicológica/efectos de los fármacos , Privación de Sueño/psicología , Consumo de Bebidas Alcohólicas/metabolismo , Alcoholismo/metabolismo , Alcoholismo/psicología , Animales , Conducta Animal/efectos de los fármacos , Señales (Psicología) , Etanol/administración & dosificación , Masculino , Ratas , Ratas Wistar , Autoadministración/métodos , Sueño , Privación de Sueño/metabolismo , Sacarosa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA