Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 286(19): 17217-26, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21454574

RESUMEN

Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer disease (AD) and likely contributes to neuropathology through various pathways. Here we report that the intracellular trafficking of apoE4 is impaired in Neuro-2a cells and primary neurons, as shown by measuring fluorescence recovery after photobleaching. In Neuro-2a cells, more apoE4 than apoE3 molecules remained immobilized in the endoplasmic reticulum (ER) and the Golgi apparatus, and the lateral motility of apoE4 was significantly lower in the Golgi apparatus (but not in the ER) than that of apoE3. Likewise, the immobile fraction was larger, and the lateral motility was lower for apoE4 than apoE3 in mouse primary hippocampal neurons. ApoE4 with the R61T mutation, which abolishes apoE4 domain interaction, was less immobilized, and its lateral motility was comparable with that of apoE3. The trafficking impairment of apoE4 was also rescued by disrupting domain interaction with the small-molecule structure correctors GIND25 and PH002. PH002 also rescued apoE4-induced impairments of neurite outgrowth in Neuro-2a cells and dendritic spine development in primary neurons. ApoE4 did not affect trafficking of amyloid precursor protein, another AD-related protein, through the secretory pathway. Thus, domain interaction renders more newly synthesized apoE4 molecules immobile and slows their trafficking along the secretory pathway. Correcting the pathological structure of apoE4 by disrupting domain interaction is a potential therapeutic approach to treat or prevent AD related to apoE4.


Asunto(s)
Apolipoproteína E4/metabolismo , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Transporte Biológico , Línea Celular , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Aparato de Golgi/metabolismo , Hipocampo/citología , Humanos , Ratones , Modelos Biológicos , Mutación , Neuronas/metabolismo
2.
J Neuroinflammation ; 9: 22, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22272874

RESUMEN

BACKGROUND: Microglia, the resident immune cells of the brain, have been implicated in brain injury and various neurological disorders. However, their precise roles in different pathophysiological situations remain enigmatic and may range from detrimental to protective. Targeting the delivery of biologically active compounds to microglia could help elucidate these roles and facilitate the therapeutic modulation of microglial functions in neurological diseases. METHODS: Here we employ primary cell cultures and stereotaxic injections into mouse brain to investigate the cell type specific localization of semiconductor quantum dots (QDs) in vitro and in vivo. Two potential receptors for QDs are identified using pharmacological inhibitors and neutralizing antibodies. RESULTS: In mixed primary cortical cultures, QDs were selectively taken up by microglia; this uptake was decreased by inhibitors of clathrin-dependent endocytosis, implicating the endosomal pathway as the major route of entry for QDs into microglia. Furthermore, inhibiting mannose receptors and macrophage scavenger receptors blocked the uptake of QDs by microglia, indicating that QD uptake occurs through microglia-specific receptor endocytosis. When injected into the brain, QDs were taken up primarily by microglia and with high efficiency. In primary cortical cultures, QDs conjugated to the toxin saporin depleted microglia in mixed primary cortical cultures, protecting neurons in these cultures against amyloid beta-induced neurotoxicity. CONCLUSIONS: These findings demonstrate that QDs can be used to specifically label and modulate microglia in primary cortical cultures and in brain and may allow for the selective delivery of therapeutic agents to these cells.


Asunto(s)
Encéfalo/citología , Microglía/fisiología , Puntos Cuánticos , Péptidos beta-Amiloides/farmacología , Análisis de Varianza , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Receptor 1 de Quimiocinas CX3C , Proteínas de Unión al Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Corteza Cerebral/citología , Clatrina/metabolismo , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas Fluorescentes Verdes/genética , Inmunotoxinas/farmacología , Mananos/farmacología , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Microglía/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fragmentos de Péptidos/farmacología , Poli I/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Quimiocina/genética , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Saporinas , Técnicas Estereotáxicas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA