Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(8): 1834-1852.e19, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38569543

RESUMEN

Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.


Asunto(s)
Bacterias , Enfermedades Cardiovasculares , Colesterol , Microbioma Gastrointestinal , Humanos , Bacterias/metabolismo , Enfermedades Cardiovasculares/metabolismo , Colesterol/análisis , Colesterol/sangre , Colesterol/metabolismo , Heces/química , Estudios Longitudinales , Metaboloma , Metabolómica , ARN Ribosómico 16S/metabolismo
2.
Cell ; 185(26): 4921-4936.e15, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36563663

RESUMEN

The perinatal period represents a critical window for cognitive and immune system development, promoted by maternal and infant gut microbiomes and their metabolites. Here, we tracked the co-development of microbiomes and metabolomes from late pregnancy to 1 year of age using longitudinal multi-omics data from a cohort of 70 mother-infant dyads. We discovered large-scale mother-to-infant interspecies transfer of mobile genetic elements, frequently involving genes associated with diet-related adaptations. Infant gut metabolomes were less diverse than maternal but featured hundreds of unique metabolites and microbe-metabolite associations not detected in mothers. Metabolomes and serum cytokine signatures of infants who received regular-but not extensively hydrolyzed-formula were distinct from those of exclusively breastfed infants. Taken together, our integrative analysis expands the concept of vertical transmission of the gut microbiome and provides original insights into the development of maternal and infant microbiomes and metabolomes during late pregnancy and early life.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Femenino , Humanos , Lactante , Embarazo , Microbioma Gastrointestinal/genética , Microbiota/genética , Madres , Lactancia Materna , Heces , Secuencias Repetitivas Esparcidas
3.
Cell ; 185(23): 4280-4297.e12, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36323316

RESUMEN

The gut microbiome has an important role in infant health and development. We characterized the fecal microbiome and metabolome of 222 young children in Dhaka, Bangladesh during the first two years of life. A distinct Bifidobacterium longum clade expanded with introduction of solid foods and harbored enzymes for utilizing both breast milk and solid food substrates. The clade was highly prevalent in Bangladesh, present globally (at lower prevalence), and correlated with many other gut taxa and metabolites, indicating an important role in gut ecology. We also found that the B. longum clades and associated metabolites were implicated in childhood diarrhea and early growth, including positive associations between growth measures and B. longum subsp. infantis, indolelactate and N-acetylglutamate. Our data demonstrate geographic, cultural, seasonal, and ecological heterogeneity that should be accounted for when identifying microbiome factors implicated in and potentially benefiting infant development.


Asunto(s)
Bifidobacterium longum , Lactante , Niño , Femenino , Humanos , Preescolar , Bifidobacterium longum/metabolismo , Bifidobacterium/metabolismo , Destete , Oligosacáridos/metabolismo , Bangladesh , Leche Humana , Heces/microbiología
4.
Cell ; 178(5): 1041-1056, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442399

RESUMEN

The current understanding of inflammatory bowel disease (IBD) pathogenesis implicates a complex interaction between host genetics, host immunity, microbiome, and environmental exposures. Mechanisms gleaned from genetics and molecular pathogenesis offer clues to the critical triggers of mucosal inflammation and guide the development of therapeutic interventions. A complex network of interactions between host genetic factors, microbes, and microbial metabolites governs intestinal homeostasis, making classification and mechanistic dissection of involved pathways challenging. In this Review, we discuss these challenges, areas of active translation, and opportunities for development of next-generation therapies.


Asunto(s)
Enfermedades Inflamatorias del Intestino/patología , Microbiota , Inmunidad Adaptativa , Animales , Bacterias/genética , Bacterias/metabolismo , Productos Biológicos/farmacología , Citocinas/genética , Citocinas/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/microbiología , Intestinos/inmunología , Intestinos/microbiología , Microbiota/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/metabolismo
5.
Immunity ; 56(7): 1681-1698.e13, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37301199

RESUMEN

CD4+ T cell responses are exquisitely antigen specific and directed toward peptide epitopes displayed by human leukocyte antigen class II (HLA-II) on antigen-presenting cells. Underrepresentation of diverse alleles in ligand databases and an incomplete understanding of factors affecting antigen presentation in vivo have limited progress in defining principles of peptide immunogenicity. Here, we employed monoallelic immunopeptidomics to identify 358,024 HLA-II binders, with a particular focus on HLA-DQ and HLA-DP. We uncovered peptide-binding patterns across a spectrum of binding affinities and enrichment of structural antigen features. These aspects underpinned the development of context-aware predictor of T cell antigens (CAPTAn), a deep learning model that predicts peptide antigens based on their affinity to HLA-II and full sequence of their source proteins. CAPTAn was instrumental in discovering prevalent T cell epitopes from bacteria in the human microbiome and a pan-variant epitope from SARS-CoV-2. Together CAPTAn and associated datasets present a resource for antigen discovery and the unraveling genetic associations of HLA alleles with immunopathologies.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , Captano , SARS-CoV-2 , Antígenos HLA , Epítopos de Linfocito T , Péptidos
6.
Immunity ; 55(10): 1909-1923.e6, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115338

RESUMEN

Reciprocal interactions between host T helper cells and gut microbiota enforce local immunological tolerance and modulate extra-intestinal immunity. However, our understanding of antigen-specific tolerance to the microbiome is limited. Here, we developed a systematic approach to predict HLA class-II-specific epitopes using the humanized bacteria-originated T cell antigen (hBOTA) algorithm. We identified a diverse set of microbiome epitopes spanning all major taxa that are compatible with presentation by multiple HLA-II alleles. In particular, we uncovered an immunodominant epitope from the TonB-dependent receptor SusC that was universally recognized and ubiquitous among Bacteroidales. In healthy human subjects, SusC-reactive T cell responses were characterized by IL-10-dominant cytokine profiles, whereas in patients with active Crohn's disease, responses were associated with elevated IL-17A. Our results highlight the potential of targeted antigen discovery within the microbiome to reveal principles of tolerance and functional transitions during inflammation.


Asunto(s)
Enfermedad de Crohn , Epítopos Inmunodominantes , Linfocitos T CD4-Positivos , Epítopos de Linfocito T , Humanos , Interleucina-10 , Interleucina-17
7.
Nature ; 626(7998): 419-426, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052229

RESUMEN

Determining the structure and phenotypic context of molecules detected in untargeted metabolomics experiments remains challenging. Here we present reverse metabolomics as a discovery strategy, whereby tandem mass spectrometry spectra acquired from newly synthesized compounds are searched for in public metabolomics datasets to uncover phenotypic associations. To demonstrate the concept, we broadly synthesized and explored multiple classes of metabolites in humans, including N-acyl amides, fatty acid esters of hydroxy fatty acids, bile acid esters and conjugated bile acids. Using repository-scale analysis1,2, we discovered that some conjugated bile acids are associated with inflammatory bowel disease (IBD). Validation using four distinct human IBD cohorts showed that cholic acids conjugated to Glu, Ile/Leu, Phe, Thr, Trp or Tyr are increased in Crohn's disease. Several of these compounds and related structures affected pathways associated with IBD, such as interferon-γ production in CD4+ T cells3 and agonism of the pregnane X receptor4. Culture of bacteria belonging to the Bifidobacterium, Clostridium and Enterococcus genera produced these bile amidates. Because searching repositories with tandem mass spectrometry spectra has only recently become possible, this reverse metabolomics approach can now be used as a general strategy to discover other molecules from human and animal ecosystems.


Asunto(s)
Amidas , Ácidos y Sales Biliares , Ésteres , Ácidos Grasos , Metabolómica , Animales , Humanos , Bifidobacterium/metabolismo , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Clostridium/metabolismo , Estudios de Cohortes , Enfermedad de Crohn/metabolismo , Enterococcus/metabolismo , Ésteres/química , Ésteres/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Metabolómica/métodos , Fenotipo , Receptor X de Pregnano/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Amidas/química , Amidas/metabolismo
8.
Nature ; 606(7915): 754-760, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35614211

RESUMEN

Microbial communities and their associated bioactive compounds1-3 are often disrupted in conditions such as the inflammatory bowel diseases (IBD)4. However, even in well-characterized environments (for example, the human gastrointestinal tract), more than one-third of microbial proteins are uncharacterized and often expected to be bioactive5-7. Here we systematically identified more than 340,000 protein families as potentially bioactive with respect to gut inflammation during IBD, about half of which have not to our knowledge been functionally characterized previously on the basis of homology or experiment. To validate prioritized microbial proteins, we used a combination of metagenomics, metatranscriptomics and metaproteomics to provide evidence of bioactivity for a subset of proteins that are involved in host and microbial cell-cell communication in the microbiome; for example, proteins associated with adherence or invasion processes, and extracellular von Willebrand-like factors. Predictions from high-throughput data were validated using targeted experiments that revealed the differential immunogenicity of prioritized Enterobacteriaceae pilins and the contribution of homologues of von Willebrand factors to the formation of Bacteroides biofilms in a manner dependent on mucin levels. This methodology, which we term MetaWIBELE (workflow to identify novel bioactive elements in the microbiome), is generalizable to other environmental communities and human phenotypes. The prioritized results provide thousands of candidate microbial proteins that are likely to interact with the host immune system in IBD, thus expanding our understanding of potentially bioactive gene products in chronic disease states and offering a rational compendium of possible therapeutic compounds and targets.


Asunto(s)
Proteínas Bacterianas , Microbioma Gastrointestinal , Genes Microbianos , Enfermedades Inflamatorias del Intestino , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Enfermedad Crónica , Microbioma Gastrointestinal/genética , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Metagenómica , Proteómica , Reproducibilidad de los Resultados , Transcriptoma
9.
Nature ; 609(7927): 582-589, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071157

RESUMEN

Increased levels of proteases, such as trypsin, in the distal intestine have been implicated in intestinal pathological conditions1-3. However, the players and mechanisms that underlie protease regulation in the intestinal lumen have remained unclear. Here we show that Paraprevotella strains isolated from the faecal microbiome of healthy human donors are potent trypsin-degrading commensals. Mechanistically, Paraprevotella recruit trypsin to the bacterial surface through type IX secretion system-dependent polysaccharide-anchoring proteins to promote trypsin autolysis. Paraprevotella colonization protects IgA from trypsin degradation and enhances the effectiveness of oral vaccines against Citrobacter rodentium. Moreover, Paraprevotella colonization inhibits lethal infection with murine hepatitis virus-2, a mouse coronavirus that is dependent on trypsin and trypsin-like proteases for entry into host cells4,5. Consistently, carriage of putative genes involved in trypsin degradation in the gut microbiome was associated with reduced severity of diarrhoea in patients with SARS-CoV-2 infection. Thus, trypsin-degrading commensal colonization may contribute to the maintenance of intestinal homeostasis and protection from pathogen infection.


Asunto(s)
Microbioma Gastrointestinal , Intestino Grueso , Simbiosis , Tripsina , Administración Oral , Animales , Sistemas de Secreción Bacterianos , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Bacteroidetes/aislamiento & purificación , Bacteroidetes/metabolismo , COVID-19/complicaciones , Citrobacter rodentium/inmunología , Diarrea/complicaciones , Heces/microbiología , Microbioma Gastrointestinal/genética , Humanos , Inmunoglobulina A/metabolismo , Intestino Grueso/metabolismo , Intestino Grueso/microbiología , Ratones , Virus de la Hepatitis Murina/metabolismo , Virus de la Hepatitis Murina/patogenicidad , Proteolisis , SARS-CoV-2/patogenicidad , Tripsina/metabolismo , Internalización del Virus
10.
Nature ; 599(7885): 458-464, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34325466

RESUMEN

Centenarians have a decreased susceptibility to ageing-associated illnesses, chronic inflammation and infectious diseases1-3. Here we show that centenarians have a distinct gut microbiome that is enriched in microorganisms that are capable of generating unique secondary bile acids, including various isoforms of lithocholic acid (LCA): iso-, 3-oxo-, allo-, 3-oxoallo- and isoallolithocholic acid. Among these bile acids, the biosynthetic pathway for isoalloLCA had not been described previously. By screening 68 bacterial isolates from the faecal microbiota of a centenarian, we identified Odoribacteraceae strains as effective producers of isoalloLCA both in vitro and in vivo. Furthermore, we found that the enzymes 5α-reductase (5AR) and 3ß-hydroxysteroid dehydrogenase (3ß-HSDH) were responsible for the production of isoalloLCA. IsoalloLCA exerted potent antimicrobial effects against Gram-positive (but not Gram-negative) multidrug-resistant pathogens, including Clostridioides difficile and Enterococcus faecium. These findings suggest that the metabolism of specific bile acids may be involved in reducing the risk of infection with pathobionts, thereby potentially contributing to the maintenance of intestinal homeostasis.


Asunto(s)
Bacterias/metabolismo , Vías Biosintéticas , Centenarios , Microbioma Gastrointestinal , Ácido Litocólico/análogos & derivados , Ácido Litocólico/biosíntesis , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Anciano de 80 o más Años , Animales , Antibacterianos/biosíntesis , Antibacterianos/metabolismo , Bacterias/clasificación , Bacterias/enzimología , Bacterias/aislamiento & purificación , Colestenona 5 alfa-Reductasa/metabolismo , Heces/química , Heces/microbiología , Femenino , Bacterias Grampositivas/metabolismo , Humanos , Ácido Litocólico/metabolismo , Masculino , Ratones , Simbiosis
11.
Nature ; 565(7741): 600-605, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30675064

RESUMEN

There is a growing appreciation for the importance of the gut microbiota as a therapeutic target in various diseases. However, there are only a handful of known commensal strains that can potentially be used to manipulate host physiological functions. Here we isolate a consortium of 11 bacterial strains from healthy human donor faeces that is capable of robustly inducing interferon-γ-producing CD8 T cells in the intestine. These 11 strains act together to mediate the induction without causing inflammation in a manner that is dependent on CD103+ dendritic cells and major histocompatibility (MHC) class Ia molecules. Colonization of mice with the 11-strain mixture enhances both host resistance against Listeria monocytogenes infection and the therapeutic efficacy of immune checkpoint inhibitors in syngeneic tumour models. The 11 strains primarily represent rare, low-abundance components of the human microbiome, and thus have great potential as broadly effective biotherapeutics.


Asunto(s)
Adenocarcinoma/inmunología , Adenocarcinoma/terapia , Bacterias/clasificación , Linfocitos T CD8-positivos/inmunología , Microbioma Gastrointestinal/inmunología , Listeriosis/prevención & control , Simbiosis/inmunología , Adenocarcinoma/patología , Animales , Antígenos CD/metabolismo , Bacterias/inmunología , Bacterias/aislamiento & purificación , Linfocitos T CD8-positivos/citología , Línea Celular Tumoral , Células Dendríticas/inmunología , Heces/microbiología , Femenino , Voluntarios Sanos , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Cadenas alfa de Integrinas/metabolismo , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Listeriosis/microbiología , Masculino , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Nature ; 569(7758): 655-662, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31142855

RESUMEN

Inflammatory bowel diseases, which include Crohn's disease and ulcerative colitis, affect several million individuals worldwide. Crohn's disease and ulcerative colitis are complex diseases that are heterogeneous at the clinical, immunological, molecular, genetic, and microbial levels. Individual contributing factors have been the focus of extensive research. As part of the Integrative Human Microbiome Project (HMP2 or iHMP), we followed 132 subjects for one year each to generate integrated longitudinal molecular profiles of host and microbial activity during disease (up to 24 time points each; in total 2,965 stool, biopsy, and blood specimens). Here we present the results, which provide a comprehensive view of functional dysbiosis in the gut microbiome during inflammatory bowel disease activity. We demonstrate a characteristic increase in facultative anaerobes at the expense of obligate anaerobes, as well as molecular disruptions in microbial transcription (for example, among clostridia), metabolite pools (acylcarnitines, bile acids, and short-chain fatty acids), and levels of antibodies in host serum. Periods of disease activity were also marked by increases in temporal variability, with characteristic taxonomic, functional, and biochemical shifts. Finally, integrative analysis identified microbial, biochemical, and host factors central to this dysregulation. The study's infrastructure resources, results, and data, which are available through the Inflammatory Bowel Disease Multi'omics Database ( http://ibdmdb.org ), provide the most comprehensive description to date of host and microbial activities in inflammatory bowel diseases.


Asunto(s)
Microbioma Gastrointestinal/genética , Enfermedades Inflamatorias del Intestino/microbiología , Animales , Hongos/patogenicidad , Microbioma Gastrointestinal/inmunología , Salud , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/terapia , Enfermedades Inflamatorias del Intestino/virología , Filogenia , Especificidad de la Especie , Transcriptoma , Virus/patogenicidad
13.
Nature ; 535(7612): 376-81, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27409811

RESUMEN

Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Resistencia a la Insulina , Metaboloma , Suero/metabolismo , Aminoácidos de Cadena Ramificada/biosíntesis , Aminoácidos de Cadena Ramificada/metabolismo , Animales , Bacteroides/fisiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/microbiología , Ayuno/sangre , Ayuno/metabolismo , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/microbiología , Humanos , Masculino , Metagenoma , Ratones , Ratones Endogámicos C57BL , Países Bajos , Prevotella/fisiología
14.
J Allergy Clin Immunol ; 148(3): 876-888, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33819509

RESUMEN

BACKGROUND: Gastrointestinal dysfunction is a frequent and disabling manifestation of autoimmune polyendocrine syndrome type 1 (APS-1), a rare monogenic multiorgan autoimmune disease caused by the loss of central AIRE-controlled immune tolerance. OBJECTIVES: This study aimed to understand the role of the gut microbiome in APS-1 symptoms and potentially alleviate common gastrointestinal symptoms by probiotic intervention. METHODS: This study characterized the fecal microbiomes of 28 patients with APS-1 and searched for associations with gastrointestinal symptoms, circulating anti-cytokine autoantibodies, and tryptophan-related metabolites. Additionally, daily doses of the probiotic Lactobacillus rhamnosus GG were administered for 3 months. RESULTS: Of 581 metagenomic operational taxonomic units (mOTUs) characterized in total, 14 were significantly associated with patients with APS-1 compared with healthy controls, with 6 mOTUs depleted and 8 enriched in patients with APS-1. Four overabundant mOTUs were significantly associated with severity of constipation. Phylogenetically conserved microbial associations with autoantibodies against cytokines were observed. After the 3-month intervention with the probiotic L rhamnosus GG, a subset of gastrointestinal symptoms were alleviated. L rhamnosus GG abundance was increased postintervention and corresponded with decreased abundances of Alistipes onderdonkii and Collinsella aerofaciens, 2 species positively associated with severity of diarrhea in patients with APS-1. CONCLUSIONS: The APS-1 microbiome correlates with several APS-1 symptoms, some of which are alleviated after a 3-month L rhamnosus GG intervention. Autoantibodies against cytokines appear to shape the gut microbiome by positively correlating with a taxonomically consistent group of bacteria.


Asunto(s)
Autoanticuerpos/inmunología , Citocinas/inmunología , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Poliendocrinopatías Autoinmunes/inmunología , Poliendocrinopatías Autoinmunes/microbiología , Probióticos/uso terapéutico , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Adolescente , Adulto , Anciano , Autoanticuerpos/sangre , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Poliendocrinopatías Autoinmunes/sangre , Poliendocrinopatías Autoinmunes/genética , Factores de Transcripción/genética , Adulto Joven , Proteína AIRE
15.
J Dairy Sci ; 103(5): 4557-4569, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32197852

RESUMEN

Subclinical metabolic disorders such as ketosis cause substantial economic losses for dairy farmers in addition to the serious welfare issues they pose for dairy cows. Major hurdles in genetic improvement against metabolic disorders such as ketosis include difficulties in large-scale phenotype recording and low heritability of traits. Milk concentrations of ketone bodies, such as acetone and ß-hydroxybutyric acid (BHB), might be useful indicators to select cows for low susceptibility to ketosis. However, heritability estimates reported for milk BHB and acetone in several dairy cattle breeds were low. The rumen microbial community has been reported to play a significant role in host energy homeostasis and metabolic and physiologic adaptations. The current study aims at investigating the effects of cows' genome and rumen microbial composition on concentrations of acetone and BHB in milk, and identifying specific rumen microbial taxa associated with variation in milk acetone and BHB concentrations. We determined the concentrations of acetone and BHB in milk using nuclear magnetic resonance spectroscopy on morning milk samples collected from 277 Danish Holstein cows. Imputed high-density genotype data were available for these cows. Using genomic and microbial prediction models with a 10-fold resampling strategy, we found that rumen microbial composition explains a larger proportion of the variation in milk concentrations of acetone and BHB than do host genetics. Moreover, we identified associations between milk acetone and BHB with some specific bacterial and archaeal operational taxonomic units previously reported to have low to moderate heritability, presenting an opportunity for genetic improvement. However, higher covariation between specific microbial taxa and milk acetone and BHB concentrations might not necessarily indicate a causal relationship; therefore further validation is needed before considering implementation in selection programs.


Asunto(s)
Enfermedades de los Bovinos/diagnóstico , Microbioma Gastrointestinal , Cetosis/veterinaria , Leche/química , Rumen/microbiología , Ácido 3-Hidroxibutírico/análisis , Acetona/análisis , Animales , Bovinos , Enfermedades de los Bovinos/genética , Enfermedades de los Bovinos/microbiología , Femenino , Pruebas Genéticas/veterinaria , Cuerpos Cetónicos/análisis , Cetosis/diagnóstico , Lactancia , Fenotipo , Rumen/metabolismo
16.
Genet Sel Evol ; 51(1): 23, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31142263

RESUMEN

BACKGROUND: Fatty acids (FA) in bovine milk derive through body mobilization, de novo synthesis or from the feed via the blood stream. To be able to digest feedstuff, the cow depends on its rumen microbiome. The relative abundance of the microbes has been shown to differ between cows. To date, there is little information on the impact of the microbiome on the formation of specific milk FA. Therefore, in this study, our aim was to investigate the impact of the rumen bacterial microbiome on milk FA composition. Furthermore, we evaluated the predictive value of the rumen microbiome and the host genetics on the composition of individual FA in milk. RESULTS: Our results show that the proportion of variance explained by the rumen bacteria composition (termed microbiability or [Formula: see text]) was generally smaller than that of the genetic component (heritability), and that rumen bacteria influenced most C15:0, C17:0, C18:2 n-6, C18:3 n-3 and CLA cis-9, trans-11 with estimated [Formula: see text] ranging from 0.26 to 0.42. For C6:0, C8:0, C10:0, C12:0, C16:0, C16:1 cis-9 and C18:1 cis-9, the variance explained by the rumen bacteria component was close to 0. In general, both the rumen microbiome and the host genetics had little value for predicting FA phenotype. Compared to genetic information only, adding rumen bacteria information resulted in a significant improvement of the predictive value for C15:0 from 0.22 to 0.38 (P = 9.50e-07) and C18:3 n-3 from 0 to 0.29 (P = 8.81e-18). CONCLUSIONS: The rumen microbiome has a pronounced influence on the content of odd chain FA and polyunsaturated C18 FA, and to a lesser extent, on the content of the short- and medium-chain FA in the milk of Holstein cattle. The accuracy of prediction of FA phenotypes in milk based on information from either the animal's genotypes or rumen bacteria composition was very low.


Asunto(s)
Bovinos/microbiología , Ácidos Grasos/metabolismo , Microbiota , Leche/metabolismo , Rumen/microbiología , Animales , Bovinos/metabolismo
17.
bioRxiv ; 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37961379

RESUMEN

In metagenomics, the pool of uncharacterized microbial enzymes presents a challenge for functional annotation. Among these, carbohydrate-active enzymes (CAZymes) stand out due to their pivotal roles in various biological processes related to host health and nutrition. Here, we present CAZyLingua, the first tool that harnesses protein language model embeddings to build a deep learning framework that facilitates the annotation of CAZymes in metagenomic datasets. Our benchmarking results showed on average a higher F1 score (reflecting an average of precision and recall) on the annotated genomes of Bacteroides thetaiotaomicron, Eggerthella lenta and Ruminococcus gnavus compared to the traditional sequence homology-based method in dbCAN2. We applied our tool to a paired mother/infant longitudinal dataset and revealed unannotated CAZymes linked to microbial development during infancy. When applied to metagenomic datasets derived from patients affected by fibrosis-prone diseases such as Crohn's disease and IgG4-related disease, CAZyLingua uncovered CAZymes associated with disease and healthy states. In each of these metagenomic catalogs, CAZyLingua discovered new annotations that were previously overlooked by traditional sequence homology tools. Overall, the deep learning model CAZyLingua can be applied in combination with existing tools to unravel intricate CAZyme evolutionary profiles and patterns, contributing to a more comprehensive understanding of microbial metabolic dynamics.

18.
Cell Host Microbe ; 31(5): 827-838.e3, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37130517

RESUMEN

Environmental exposures are a major risk factor for developing colorectal cancer, and the gut microbiome may serve as an integrator of such environmental risk. To study the microbiome associated with premalignant colon lesions, such as tubular adenomas (TAs) and sessile serrated adenomas (SSAs), we profiled stool samples from 971 participants undergoing colonoscopy and paired these data with dietary and medication history. The microbial signatures associated with either SSA or TA are distinct. SSA associates with multiple microbial antioxidant defense systems, whereas TA associates with a depletion of microbial methanogenesis and mevalonate metabolism. Environmental factors, such as diet and medications, link with the majority of identified microbial species. Mediation analyses found that Flavonifractor plautii and Bacteroides stercoris transmit the protective or carcinogenic effects of these factors to early carcinogenesis. Our findings suggest that the unique dependencies of each premalignant lesion may be exploited therapeutically or through dietary intervention.


Asunto(s)
Adenoma , Pólipos del Colon , Neoplasias Colorrectales , Humanos , Pólipos del Colon/patología , Neoplasias Colorrectales/patología , Colonoscopía
19.
Nat Microbiol ; 8(6): 1064-1078, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37188814

RESUMEN

Distinct gut microbiome ecology may be implicated in the prevention of aging-related diseases as it influences systemic immune function and resistance to infections. Yet, the viral component of the microbiome throughout different stages in life remains unexplored. Here we present a characterization of the centenarian gut virome using previously published metagenomes from 195 individuals from Japan and Sardinia. Compared with gut viromes of younger adults (>18 yr) and older individuals (>60 yr), centenarians had a more diverse virome including previously undescribed viral genera, such as viruses associated with Clostridia. A population shift towards higher lytic activity was also observed. Finally, we investigated phage-encoded auxiliary functions that influence bacterial physiology, which revealed an enrichment of genes supporting key steps in sulfate metabolic pathways. Phage and bacterial members of the centenarian microbiome displayed an increased potential for converting methionine to homocysteine, sulfate to sulfide and taurine to sulfide. A greater metabolic output of microbial hydrogen sulfide in centenarians may in turn support mucosal integrity and resistance to pathobionts.


Asunto(s)
Bacteriófagos , Microbiota , Virus , Adulto , Anciano de 80 o más Años , Humanos , Longevidad , Viroma , Centenarios , Virus/genética , Bacteriófagos/genética
20.
J Exp Med ; 220(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36752797

RESUMEN

Plasma cells (PCs) constitute a significant fraction of colonic mucosal cells and contribute to inflammatory infiltrates in ulcerative colitis (UC). While gut PCs secrete bacteria-targeting IgA antibodies, their role in UC pathogenesis is unknown. We performed single-cell V(D)J- and RNA-seq on sorted B cells from the colon of healthy individuals and patients with UC. A large fraction of B cell clones is shared between different colon regions, but inflammation in UC broadly disrupts this landscape, causing transcriptomic changes characterized by an increase in the unfolded protein response (UPR) and antigen presentation genes, clonal expansion, and isotype skewing from IgA1 and IgA2 to IgG1. We also directly expressed and assessed the specificity of 152 mAbs from expanded PC clones. These mAbs show low polyreactivity and autoreactivity and instead target both shared bacterial antigens and specific bacterial strains. Altogether, our results characterize the microbiome-specific colon PC response and how its disruption might contribute to inflammation in UC.


Asunto(s)
Colitis Ulcerosa , Humanos , Colitis Ulcerosa/genética , Células Plasmáticas , Colon , Inflamación/metabolismo , Antígenos Bacterianos , Bacterias , Inmunoglobulina A/metabolismo , Mucosa Intestinal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA