RESUMEN
Antibody-Drug Conjugates (ADC) are a new class of anticancer therapeutics with immense potential. They have been rapidly advancing in the last two decades. This fast speed of development has become possible due to several new technologies and methods. One of them is Click Chemistry, an approach that was created only two decades ago, but already is actively utilized for bioconjugation, material science and drug discovery. In this review, we researched the impact of Click Chemistry reactions on the synthesis and development of ADCs. The information about the most frequently utilized reactions, such as Michael's addition, Copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC), Strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), oxime bond formation, hydrazine-iso-Pictet-Spengler Ligation (HIPS), Diels-Alder reactions have been summarized. The implementation of thiol-maleimide Click Chemistry reaction in the synthesis of numerous FDA-approved Antibody-Drug Conjugates has been reported. The data amassed in the present review provides better understanding of the importance of Click Chemistry in the synthesis, development and improvement of the Antibody-Drug Conjugates and it will be helpful for further researches related to ADCs.
Asunto(s)
Azidas , Química Clic , Maleimidas , Compuestos de Sulfhidrilo , Azidas/química , Alquinos/química , Reacción de Cicloadición , Cobre/químicaRESUMEN
Design of tubulin inhibitors as anticancer drugs dynamically developed over the past 20 years. The modern arsenal of potential tubulin-targeting anticancer agents is represented by small molecules, monoclonal antibodies, and antibody-drug conjugates. Moreover, targeting tubulin has been a successful strategy in the development of antiparasitic drugs. In the present review, an overall picture of the research and development of potential tubulin-targeting agents using small molecules between 2018 and 2023 is provided. The data about some most often used and prospective chemotypes of small molecules (privileged heterocycles, moieties of natural molecules) and synthetic methodologies (analogue-based, fragment-based drug design, molecular hybridization) applied for the design of novel agents with an impact on the tubulin system are summarized. The design and prospects of multi-target agents with an impact on the tubulin system were also highlighted. Reported in the review data contribute to the "structure-activity" profile of tubulin-targeting small molecules as anticancer and antiparasitic agents and will be useful for the application by medicinal chemists in further exploration, design, improvement, and optimization of this class of molecules.
Asunto(s)
Antineoplásicos , Moduladores de Tubulina , Moduladores de Tubulina/farmacología , Tubulina (Proteína)/metabolismo , Antiparasitarios/farmacología , Estudios Prospectivos , Antineoplásicos/farmacología , Relación Estructura-ActividadRESUMEN
Potentilla alba is a valuable medicinal plant that has been highly praised even before its first appearance in herbal books; however, it has now been forgotten in Western Europe. Currently, this species is used in Eastern Europe as a remedy to treat dysentery and various thyroid gland dysfunctions. The present review summarizes the advances in the phytochemical, pharmacological, and toxicological research related to this plant species. Clinical trials that have been conducted to date support its traditional use for treating thyroid disorders, although its exact mechanism of action, bioavailability, and pharmacokinetics data are missing.
Asunto(s)
Potentilla , Glándula Tiroides , Fitoterapia , Rizoma , Europa (Continente) , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , FitoquímicosRESUMEN
Combining chemotherapy with immunotherapy still remains a regimen in anticancer therapy. Novel 4-thiazolidinone-bearing hybrid molecules possess well-documented anticancer activity, and together with anti-HER2 antibodies, may represent a promising strategy in treating patients with gastric cancer with confirmed human epidermal growth factor receptor 2 (HER2) expression. The aim of the study was to synthesize a new 4-thiazolidinone derivative (Les-4367) and investigate its molecular mechanism of action in combination with trastuzumab or pertuzumab in human AGS gastric cancer cells. AGS cell viability and antiproliferative potential were examined. The effect of the tested combinations as well as monotherapy on apoptosis and autophagy was also determined. Metalloproteinase-2 (MMP-2), intercellular adhesion molecule 1 (ICAM-1), pro-inflammatory and anti-inflammatory cytokine concentrations were also demonstrated by the ELISA technique. We proved that pertuzumab and trastuzumab were very effective in increasing the sensitivity of AGS gastric cancer cells to novel Les-4367. The molecular mechanism of action of the tested combination is connected with the induction of apoptosis. Additionally, the anticancer activity is not associated with the autophagy process. Decreased concentrations of pro-inflammatory cytokines, MMP-2 and ICAM-1-were observed. The novel combination of drugs based on anti-HER2 antibodies with Les-4367 is a promising strategy against AGS gastric cancer cells.