RESUMEN
Alcohol use disorders are chronic and highly relapsing disorders, thus alcoholic patients have a high rate of recidivism for drug use even after long periods of abstinence. The literature points to the potential usefulness of N-acetylcysteine (NAC) in the management of several substance use disorders probably due to its capacity to restore brain homeostasis of the glutamate system disrupted in addiction. However, there is little evidence in the case of alcohol. The aim of this study was to explore the potential anti-relapse efficacy of NAC using the alcohol deprivation effect (ADE) model in long-term experienced rats. Two experiments were performed in male Wistar rats to: (a) test the efficacy of NAC to prevent relapse and (b) discriminate the best administration schedule (intermittent vs. continuous) for NAC. In the first experiment, animals were implanted with mini-osmotic pumps delivering 0 or 1 mg/hr NAC during 14 days. In a second experiment, rats received 0, 60, or 100 mg/kg once daily by subcutaneous injection. The efficacy to prevent ADE was evaluated in both experiments. NAC subcutaneously administered, either by continuous infusion or by intermittent injections regimen, is able to block the ADE. The best results were obtained after using 60 mg/kg NAC dose. Our findings support the hypothesis that NAC may represent a valuable therapy in the management of alcohol relapse.
Asunto(s)
Acetilcisteína/uso terapéutico , Consumo de Bebidas Alcohólicas/prevención & control , Alcoholismo/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Acetilcisteína/administración & dosificación , Animales , Evaluación Preclínica de Medicamentos , Etanol/toxicidad , Infusiones Subcutáneas , Inyecciones Subcutáneas , Masculino , Modelos Animales , Distribución Aleatoria , Ratas , Ratas Wistar , RecurrenciaRESUMEN
Pharmacokinetic studies concerning d-penicillamine (an acetaldehyde sequestering agent) are scarce and have not evaluated the influence of chronic ethanol consumption and age on its disposition. Since recent preclinical studies propose d-penicillamine as a promising treatment for alcohol relapse, the main aim of the present work was to evaluate the influence of these two factors on d-penicillamine disposition in order to guide future clinical studies on the anti-relapse efficacy of this drug in alcoholism. Additionally, the effect of the administered dose was also evaluated. To this end, three studies were carried out. Study 1 assessed the influence of dose on d-penicillamine disposition, whereas studies 2 and 3 evaluated, respectively, the influence of chronic alcohol consumption and age. Rapid intravenous administrations of 2, 10 and 30 mg/kg of d-penicillamine were performed using young or adult ethanol-naïve rats or adult ethanol-experienced (subjected to a long-term ethanol self-administration protocol) rats. Pharmacokinetic parameters were derived from the biexponential model. Statistical analysis of CL, normalized AUC0 (∞) , V1 and k10 revealed that disposition, in the range plasma concentrations assayed, is non-linear both in young ethanol-naïve and in adult ethanol-experienced rats. Notably, no significant changes in t1/2 were detected. Chronic ethanol consumption significantly reduced CL values by 35% without affecting t1/2 . d-Penicillamine disposition was equivalent in young and adult animals. In conclusion, although DP pharmacokinetics is non-linear, the lack of significant alterations of the t1/2 would potentially simplify the clinical use of this drug. Chronic consumption of ethanol also alters d-penicillamine disposition but, again, does not modify t1/2.
Asunto(s)
Alcoholismo/fisiopatología , Quelantes/farmacocinética , Etanol/administración & dosificación , Penicilamina/farmacocinética , Factores de Edad , Animales , Área Bajo la Curva , Quelantes/administración & dosificación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Semivida , Masculino , Dinámicas no Lineales , Penicilamina/administración & dosificación , Ratas , Ratas WistarRESUMEN
Alcohol consumption leads to significant neurochemical and neurobiological changes, contributing to the development of alcohol use disorders (AUDs), which exhibit sex- and age-dependent variations according to clinical data. However, preclinical studies often neglect these factors when investigating alcohol consumption patterns. In this study, we present data on male and female rats continuously exposed to a 20 % ethanol solution for one month. The animals were divided into two groups based on their age at the onset of drinking (8 and 12 weeks old). Interestingly, 12-week-old males consumed significantly less alcohol than both 12-week-old females and 8-week-old animals, indicating that alcohol consumption patterns vary with sex and age in our model. Additionally, to advance in the study of the neurobiological alterations induced by ethanol intake in the mesocorticolimbic system (MCLS) that may participate in its reinforcing properties and the maintenance of alcohol drinking behavior, we measured catalase activity-an enzyme involved in alcohol metabolism and related to ethanol reinforcement-in the nucleus accumbens (NAc) of these animals. Furthermore, we measured the levels of mu (MOR), kappa (KOR), delta (DOR), and nociceptin (NOP) opioid receptors in the NAc, as the endogenous opioidergic system plays a pivotal role in regulating the MCLS and alcohol reinforcement. MOR levels were lower in high alcohol-consuming groups (8-week-old males and all females). Both DOR and NOP levels decreased with age, whereas KOR levels remained unchanged. Our findings suggest that the age at onset of alcohol consumption critically influences alcohol intake, particularly in males. Additionally, females consistently showed higher alcohol intake regardless of age, highlighting inherent sex-specific differences. The dynamic changes in catalase activity and opioid receptor expression suggest the involvement of these factors in modulating alcohol consumption.
Asunto(s)
Consumo de Bebidas Alcohólicas , Etanol , Núcleo Accumbens , Animales , Masculino , Núcleo Accumbens/metabolismo , Femenino , Ratas , Consumo de Bebidas Alcohólicas/metabolismo , Etanol/administración & dosificación , Etanol/metabolismo , Caracteres Sexuales , Ratas Wistar , Catalasa/metabolismo , Factores de Edad , Péptidos Opioides/metabolismo , Encéfalo/metabolismo , Factores SexualesRESUMEN
Mu-Opioid Receptors (MORs) are well-known for participating in analgesia, sedation, drug addiction, and other physiological functions. Although MORs have been related to neuroinflammation their biological mechanism remains unclear. It is suggested that MORs work alongside Toll-Like Receptors to enhance the release of pro-inflammatory mediators and cytokines during pathological conditions. Some cytokines, including TNF-α, IL-1ß and IL-6, have been postulated to regulate MORs levels by both avoiding MOR recycling and enhancing its production. In addition, Neurokinin-1 Receptor, also affected during neuroinflammation, could be regulating MOR trafficking. Therefore, inflammation in the central nervous system seems to be associated with altered/increased MORs expression, which might regulate harmful processes, such as drug addiction and pain. Here, we provide a critical evaluation on MORs' role during neuroinflammation and its implication for these conditions. Understanding MORs' functioning, their regulation and implications on drug addiction and pain may help elucidate their potential therapeutic use against these pathological conditions and associated disorders.
Asunto(s)
Morfina , Trastornos Relacionados con Sustancias , Humanos , Morfina/uso terapéutico , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Enfermedades Neuroinflamatorias , Receptores Opioides mu/metabolismo , Dolor/tratamiento farmacológico , Trastornos Relacionados con Sustancias/tratamiento farmacológicoRESUMEN
RATIONALE: Using a preclinical model based on the Alcohol Deprivation Effect (ADE), we have reported that N-Acetylcysteine (NAC) can prevent the relapse-like drinking behaviour in long-term ethanol-experienced male rats. OBJECTIVES: To investigate if chronic ethanol intake and protracted abstinence affect several glutamate transporters and whether NAC, administered during the withdrawal period, could restore the ethanol-induced brain potential dysfunctions. Furthermore, the antioxidant and anti-inflammatory effects of NAC during abstinence in rats under the ADE paradigm were also explored. METHODS: The expression of GLT1, GLAST and xCT in nucleus accumbens (Nacc) and dorsal striatum (DS) of male Wistar was analysed after water and chronic ethanol intake. We used the model based on the ADE within another cohort of male Wistar rats. During the fourth abstinence period, rats were treated for 9 days with vehicle or NAC (60, 100 mg/kg; s.c.). The effects of NAC treatment on (i) glutamate transporters expression in the Nacc and DS, (ii) the oxidative status in the hippocampus (Hip) and amygdala (AMG) and (iii) some neuroinflammatory markers in prefrontal cortex (PFC) were tested. RESULTS: NAC chronic administration during protracted abstinence restored oxidative stress markers (GSSG and GGSH/GSH) in the Hip. Furthermore, NAC was able to normalize some neuroinflammation markers in PFC without normalizing the observed downregulation of GLT1 and GLAST in Nacc. CONCLUSIONS: NAC restores brain oxidative stress and neuroinflammation that we previously observed after protracted ethanol abstinence in long-term ethanol-experienced male rats. This NAC effect could be a plausible mechanism for its anti-relapse effect. Also, brain oxidative stress and neuroinflammation could represent and identify plausible targets for searching new anti-relapse pharmacotherapies.
Asunto(s)
Acetilcisteína , Etanol , Ratas , Masculino , Animales , Ratas Wistar , Acetilcisteína/farmacología , Abstinencia de Alcohol , Enfermedades Neuroinflamatorias , Encéfalo , Enfermedad Crónica , Estrés Oxidativo , Glutamatos/metabolismo , Consumo de Bebidas Alcohólicas/tratamiento farmacológicoRESUMEN
Previous studies in vivo have shown that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse. Although opioid receptors, especially the µ-opioid receptors (MORs), may be involved, the cellular mechanisms mediating the effects of salsolinol have not been fully explored. In the current study, we used whole-cell patch-clamp recordings to examine the effects of salsolinol on dopamine neurons of the ventral tegmental area (VTA) in acute brain slices from Sprague-Dawley rats. Salsolinol (0.01-1 µM) dose-dependently and reversibly increased the ongoing firing of dopamine neurons; this effect was blocked by naltrexone, an antagonist of MORs, and gabazine, an antagonist of GABA(A) receptors. We further showed that salsolinol reduced the frequency without altering the amplitude of spontaneous GABA(A) receptor-mediated inhibitory postsynaptic currents in dopamine neurons. The salsolinol-induced reduction was blocked by both naltrexone and [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin, an agonist of MORs. Thus, salsolinol excites VTA-dopamine neurons indirectly by activating MORs, which inhibit GABA neurons in the VTA. This form of disinhibition seems to be a novel mechanism underlying the effects of salsolinol.
Asunto(s)
Potenciales de Acción/fisiología , Neuronas Dopaminérgicas/metabolismo , Isoquinolinas/farmacología , Receptores Opioides mu/metabolismo , Área Tegmental Ventral/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Área Tegmental Ventral/efectos de los fármacosRESUMEN
Evidence concerning the role of alcohol-induced neuroinflammation in alcohol intake and relapse has increased in the last few years. It is also proven that mu-opioid receptors (MORs) mediate the reinforcing properties of alcohol and, interestingly, previous research suggests that neuroinflammation and MORs could be related. Our objective is to study neuroinflammatory states and microglial activation, together with adaptations on MOR expression in the mesocorticolimbic system (MCLS) during the abstinence and relapse phases. To do so, we have used a sex-dependent rat model of complete Freund's adjuvant (CFA)-induced alcohol deprivation effect (ADE). Firstly, our results confirm that only CFA-treated female rats, the only experimental group that showed relapse-like behavior, exhibited specific alterations in the expression of phosphorylated NFκB, iNOS, and COX2 in the PFC and VTA. More interestingly, the analysis of the IBA1 expression revealed a decrease of the microglial activation in PFC during abstinence and an increase of its expression in the relapse phase, together with an augmentation of this activation in the NAc in both phases that only occur in female CFA-treated rats. Additionally, the expression of IL1ß also evidenced these dynamic changes through these two phases following similar expression patterns in both areas. Furthermore, the expression of the cytokine IL10 showed a different profile than that of IL1ß, indicating anti-inflammatory processes occurring only during abstinence in the PFC of CFA-female rats but neither during the reintroduction phase in PFC nor in the NAc. These data indicate a downregulation of microglial activation and pro-inflammatory processes during abstinence in the PFC, whereas an upregulation can be observed in the NAc during abstinence that is maintained during the reintroduction phase only in CFA-female rats. Secondly, our data reveal a correlation between the alterations observed in IL1ß, IBA1 levels, and MOR levels in the PFC and NAc of CFA-treated female rats. Although premature, our data suggest that neuroinflammatory processes, together with neural adaptations involving MOR, might play an important role in alcohol relapse in female rats, so further investigations are warranted.
Asunto(s)
Alcoholismo/metabolismo , Sistema Límbico/metabolismo , Microglía/metabolismo , Neuroinmunomodulación , Dolor/metabolismo , Corteza Prefrontal/metabolismo , Receptores Opioides mu/metabolismo , Abstinencia de Alcohol , Alcoholismo/inmunología , Alcoholismo/fisiopatología , Animales , Proteínas de Unión al Calcio/metabolismo , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Femenino , Adyuvante de Freund , Mediadores de Inflamación/metabolismo , Sistema Límbico/inmunología , Sistema Límbico/fisiopatología , Masculino , Proteínas de Microfilamentos/metabolismo , Microglía/inmunología , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Dolor/inducido químicamente , Dolor/inmunología , Dolor/fisiopatología , Fosforilación , Corteza Prefrontal/inmunología , Corteza Prefrontal/fisiopatología , Ratas Sprague-Dawley , Recurrencia , Factores SexualesRESUMEN
N-acetylcysteine (NAC) is a prodrug that is marketed as a mucolytic agent and used for the treatment of acetaminophen overdose. Over the last few decades, evidence has been gathered that suggests the potential use of NAC as a new pharmacotherapy for alcohol use disorder (AUD), although its mechanism of action is already being debated. In this paper, we set out to assess both the potential involvement of the glutamate metabotropic receptors (mGluR) in the possible dual effect of NAC administered at two different doses and NAC's effect on ethanol-induced activation. To this aim, 30 or 120 mg/kg of NAC was intraperitoneally administered to rats with the presence or absence of the negative allosteric modulator of mGluR5 (MTEP 0.1 mg/kg). Thereafter, the cFOS IR-cell expression was analyzed. Secondly, we explored the effect of 120 mg/kg of NAC on the neurochemical and behavioral activation induced by intra-VTA ethanol administration (150 nmol). Our results showed that the high NAC dose stimulated cFOS expression in the NAcc, and that this effect was suppressed in the presence of MTEP, thus suggesting the implication of mGluR5. Additionally, high doses could attenuate the ethanol-induced increase in cFOS-expression in the NAcc, probably due to a phenomenon based on the long-term depression of the MSNs. Additional experiments are required to corroborate our hypothesis.
RESUMEN
ABSTRACT: Recent studies have drawn the attention to the link between alcohol use disorder and the presence of pain. Indeed, the correct management of pain in patients with a previous history of alcohol use disorder has been reported to decrease the risk of relapse in alcohol drinking, suggesting that in this prone population, pain may increase the vulnerability to relapse. Previous data in male rats revealed that inflammatory pain desensitizes mu-opioid receptors in the ventral tegmental area and increases intake of high doses of heroin. Owing to the relevant role of mu-opioid receptors in alcohol effects, we hypothesize that pain may also alter alcohol reinforcing properties and therefore affect alcohol relapse in male rats. Our microdialysis studies show that the presence of inflammatory pain blunted the increase of extracellular dopamine levels in the nucleus accumbens induced by 1.5 g/kg of ethanol (s.c.). Moreover, we also revealed that the administration of 52 nmol of ethanol into the ventral tegmental area failed to induce place preference only in inflammatory pain-suffering animals, and a higher dose (70 nmol) was necessary to reverse this effect. Finally, we evaluated the effect of inflammatory pain on the alcohol deprivation effect in long-term ethanol-experienced male rats. After 4 cycles of free ethanol intake and abstinence periods, inflammatory pain induced alcohol deprivation effect without affecting its magnitude. These intriguing data reveal the impact of pain on neurochemical and behavioral effects after alcohol administration but also underscore the necessity of finding an appropriate paradigm to determine the long-term behavioral consequences.
Asunto(s)
Dopamina , Núcleo Accumbens , Consumo de Bebidas Alcohólicas , Animales , Etanol , Humanos , Masculino , Dolor/tratamiento farmacológico , Dolor/etiología , Ratas , Área Tegmental VentralRESUMEN
The neurobiological mechanisms underlying alcohol motivational properties are still not fully understood, however, the mu-opioid receptors (MORs) have been evidenced as central elements in the manifestation of the alcohol reinforcing properties. Drug-associated environmental stimuli can trigger alcohol relapse and promote alcohol consumption whereby N-methyl-d-aspartate (NMDA) receptors play a pivotal role. Here we sought to demonstrate, for the first time, that ethanol induces conditioned place preference or aversion (CPP or CPA) when administered locally into the ventral tegmental area (VTA) and the associated role of MORs. We further analyzed the changes in the expression and mRNA levels of GluN1 and GluN2A subunits in designated brain areas. The expression of CPP or CPA was characterized following intra-VTA ethanol administration and we showed that either reinforcing (CPP) or aversive (CPA) properties are dependent on the dose administered (ranging here from 35 to 300 nmol). Furthermore, the critical contribution of local MORs in the acquisition of CPP was revealed by a selective antagonist, namely ß-Funaltrexamine. Finally, modifications of the expression of NMDA receptor subunits in the Nucleus Accumbens (NAc) and Hippocampus after ethanol-induced CPP were analyzed at the proteomic and transcriptomic levels by western blot and In Situ Hybridation RNAscope techniques, respectively. Results showed that the mRNA levels of GluN2A but not GluN1 in NAc are higher after ethanol CPP. These novel results pave the way for further characterisation of the mechanisms by which ethanol motivational properties are associated with learned environmental cues.
Asunto(s)
Reacción de Prevención/fisiología , Condicionamiento Psicológico/fisiología , Etanol/administración & dosificación , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides mu/fisiología , Área Tegmental Ventral/metabolismo , Animales , Reacción de Prevención/efectos de los fármacos , Condicionamiento Psicológico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Infusiones Intraventriculares , Masculino , Microinyecciones/métodos , Ratas , Ratas Wistar , Área Tegmental Ventral/efectos de los fármacosRESUMEN
Chronic pain is a worldwide major health problem and many pain-suffering patients are under opioid based therapy. Epidemiological data show that pain intensity correlates with the risk of misuse of prescription opioids, and other drugs of abuse including alcohol. This increased vulnerability to suffer Substance Use Disorders could be, in part, caused by functional changes that occur over the mesocorticolimbic system, a brain pathway involved in reward processing and addiction. Previous data in rats revealed that inflammatory pain desensitizes mu opioid receptors (MORs) in the ventral tegmental area (VTA). As a consequence, pain alters dopamine release in the nucleus accumbens (NAc) derived from MOR activation in the VTA and also increases intake of high doses of heroine. Given that the VTA neurons target different brain regions, in the present study we first analyzed changes induced by inflammatory pain in the MOR dependent activation pattern of the main VTA projecting areas. To do that, we administered two doses (7 or 14â¯ng) of DAMGO (MORs agonist) or artificial cerebrospinal fluid (aCSF) focally into the VTA of rats and measured the activation in projection areas by cFos immunohistochemistry. Our results show that focal injections of DAMGO in the VTA increases cFos expression in the majority of its projecting areas, namely NAc, basolateral amygdala (BLA), cingulate cortex (ACC) and bed nucleus of the stria terminalis (BNST), as compared to aCSF. Second, we analyzed whether inflammatory pain would affect to cFos expression using a group of rats injected with CFA in the hind paw. In this case, we found that cFos expression was not significantly different between DAMGO and aCSF administered rats in BLA, ACC and BNST. Our results confirm that inflammatory pain induces desensitization of VTA MORs in a region dependent manner which can be very relevant for addictive behaviours.
Asunto(s)
Genes fos/genética , Inflamación/metabolismo , Dolor/metabolismo , Receptores Opioides mu/agonistas , Área Tegmental Ventral/metabolismo , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/farmacología , Animales , Encefalina Ala(2)-MeFe(4)-Gli(5)/administración & dosificación , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Adyuvante de Freund , Regulación de la Expresión Génica , Inmunohistoquímica , Inflamación/inducido químicamente , Masculino , Microinyecciones , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Ratas , Área Tegmental Ventral/efectos de los fármacosRESUMEN
The mu- and delta-opioid receptors located at the terminal level in nucleus accumbens are involved in the opiate modulation of dopamine release in this brain area. However, recent studies suggest that the effects of opioid drugs on the core subregion of nucleus accumbens may completely differ from those observed in the shell. We used in vivo microdialysis to simultaneously apply selective mu- and delta-opioid receptor agonists and to measure extracellular levels of dopamine in three subregions of the accumbens, namely shell, core, and the transition zone between them. The regional analysis of these subregions of the accumbens demonstrated that basal levels of dopamine and its metabolites were higher in the core, and decreased from this subregion to the shell. Retrodialysis application to the core of both the selective mu-receptor agonist ([D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO) (1 micromol/L)) and of the selective delta-opioid receptor agonist ([D-Pen(2), D-Pen(5)]-enkephalin (DPDPE) (50 nmol/L)) increased the dialysate levels of dopamine. However, the application of these drugs to the shell significantly reduced the dopamine levels in this subregion. Local application of the same doses of these drugs in the transition zone between the shell and the core did not significantly affect the dopamine levels in dialysates. These results suggest that the opioid circuits modulating dopaminergic activity in the shell could differ from those in the core of the nucleus accumbens.
Asunto(s)
Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Receptores Opioides delta/fisiología , Receptores Opioides mu/fisiología , Ácido 3,4-Dihidroxifenilacético/metabolismo , Analgésicos Opioides/farmacología , Animales , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Encefalina D-Penicilamina (2,5)/farmacología , Ácido Homovanílico/metabolismo , Masculino , Microdiálisis/métodos , Núcleo Accumbens/efectos de los fármacos , Ratas , Ratas Wistar , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Factores de TiempoRESUMEN
AIMS: The expression of cytochrome P4502E1 (CYP2E1) in the brain has been demonstrated in several regions, nevertheless there is a lack of specific studies on the constitutive expression and induction at the mesocorticolimbic system, the most relevant brain pathway in the context of drug addiction and alcoholism. Hence, we have performed a detailed study of the CYP2E1 expression and induction in three key areas of the mesocorticolimbic system of the rat brain: prefrontal cortex (PFC), nucleus accumbens (NAc), and ventral tegmental area (VTA). METHODS: Expression levels of CYP2E1 were analyzed by Western blot. The induction of the enzyme in the selected brain areas by chronic acetone (1% v/v acetone in drinking water for 11 days) and ethanol (3 g/kg by gavage for 7 days) was also assessed. RESULTS: (i) CYP2E1 was expressed in PFC, Nac, and VTA, with the order of magnitude of the levels being VTA approximately PFC > Nac, and approximately 3-13% of it was encountered in liver; (ii) acetone treatment significantly increased CYP2E1 expression in Nac, up to 212% of the control levels, whereas not significant changes were observed in VTA and PFC; (iii) chronic ethanol treatment only resulted in a significant induction of enzyme levels in VTA (124%). A similar enhancement, though not significant, was found to occur in NAc. CONCLUSIONS: CYP2E1 was present in the mesocorticolimbic system at different levels of expression. Chronic acetone and ethanol treatments are able to increase enzyme levels in specific areas of this system with the pattern of induction of the two agents being different.
Asunto(s)
Acetona/farmacología , Alcoholismo/genética , Conducta Adictiva/genética , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Etanol/farmacología , Sistema Límbico/efectos de los fármacos , Sistema Límbico/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Animales , Western Blotting , Masculino , Ratas , Ratas WistarRESUMEN
Ethanol, as other drugs of abuse, is able to activate the ventral tegmental area dopamine (VTA-DA) neurons leading to positively motivational alcohol-seeking behavior and use, and, ultimately to ethanol addiction. In the last decades, the involvement of brain-derived acetaldehyde (ACD) in the ethanol actions in the mesolimbic pathway has been widely demonstrated. Consistent published results have provided a mechanistic support to the use of ACD inactivating agents to block the motivational and reinforcing properties of ethanol. Hence, in the last years, several pre-clinical studies have been performed in order to analyze the effects of the sequestering ACD agents in the prevention of ethanol relapse-like drinking behavior as well as in chronic alcohol consumption. In this sense, one of the most explored interventions has been the administration of D-Penicillamine (DP). These pre-clinical studies, that we critically summarize in this article, are considered a critical step for the potential development of a novel pharmacotherapeutic strategy for alcohol addiction treatment that could improve the outcomes of current ones. Thus, on one hand, several experimental findings provide the rationale for using DP as a novel therapeutic intervention alone and/or in combination to prevent relapse into alcohol seeking and consumption. On the other hand, its effectiveness in reducing voluntary ethanol consumption in long-term experienced animals still remains unclear. Finally, this drug offers the additional advantage that has already been approved for use in humans, hence it could be easily implemented as a new therapeutic intervention for relapse prevention in alcoholism.
RESUMEN
After decades of uncertainties and drawbacks, the study on the role and significance of acetaldehyde in the effects of ethanol seemed to have found its main paths. Accordingly, the effects of acetaldehyde, after its systemic or central administration and as obtained following ethanol metabolism, looked as they were extensively characterized. However, almost 5 years after this research appeared at its highest momentum, the investigations on this topic have been revitalized on at least three main directions: (1) the role and the behavioral significance of acetaldehyde in different phases of ethanol self-administration and in voluntary ethanol consumption; (2) the distinction, in the central effects of ethanol, between those arising from its non-metabolized fraction and those attributable to ethanol-derived acetaldehyde; and (3) the role of the acetaldehyde-dopamine condensation product, salsolinol. The present review article aims at presenting and discussing prospectively the most recent data accumulated following these three research pathways on this never-ending story in order to offer the most up-to-date synoptic critical view on such still unresolved and exciting topic.
RESUMEN
Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist ß-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.
RESUMEN
Inorganic arsenic has been classified as a carcinogen for humans (Group I). However, its transit across the human intestinal epithelium has not been characterized. Using Caco-2 cells, the thiol-redox balance and apparent permeability coefficients (P(app)) for As(III) in the apical to basolateral (AP-BL) and basolateral to apical (BL-AP) direction were evaluated. After As(III) exposure, GSH-induced synthesis was observed, increasing the GSH/GSSG ratio by elevating the As(III) concentration. The AP-BL permeabilities decreased as the As(III) concentrations increased, indicating the existence of a mediated transport mechanism. The (BL-AP)/(AP-BL) permeability ratios were higher than unity, suggesting the existence of a secretion process.
Asunto(s)
Arsénico/farmacocinética , Arsénico/toxicidad , Mucosa Intestinal/metabolismo , Células CACO-2 , Glutatión/análisis , Disulfuro de Glutatión/análisis , Humanos , Mitocondrias/efectos de los fármacos , Oxidación-Reducción , PermeabilidadRESUMEN
A number of studies have shown that chemical stimulation (using N-methyl-D-aspartate (NMDA) infusions) or electrical stimulation of the ventral hippocampus (VH) elicits locomotor activation and sustained increases in nucleus accumbens (NAc) dopamine (DA) levels in rodents. How DA neurotransmission in NAc is involved in these effects has also been well established. However, the modulatory role of the DA receptors located in VH is not yet fully understood. The purpose of this study was to characterize the role played by VH D1 and D2 subtype receptors in both the locomotor activation and NAc DA increases induced by NMDA stimulation of the VH. This was assessed by studying how retrodialysis application of NMDA (50 mM, 10 min) affects motor activity and NAc DA levels during simultaneous retrodialysis administration of the D1/D5 receptor antagonist SCH 23390 (100 and 250 microM, 60 min) or the D2 receptor antagonist raclopride (100 and 250 microM, 60 min). SCH 23390 attenuated or completely abolished NMDA-evoked locomotor activation and the concurrent increase in NAc DA levels. On the other hand, raclopride was initially able to attenuate the effects of VH NMDA stimulation. However, in the last phase of the experiments, animals showed an important increase in clonic seizure activity with a simultaneous and dramatic increase in NAc DA levels. Our results show that the NMDA receptor-mediated effects in the VH require both D1 and, probably, D2 receptors and suggest that DA in VH strongly modulates the excitatory outputs from this brain area.
Asunto(s)
Dopamina/metabolismo , Hipocampo/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptores Dopaminérgicos/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Benzazepinas/farmacología , Química Encefálica/efectos de los fármacos , Antagonistas de Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2 , Agonistas de Aminoácidos Excitadores/farmacología , Hipocampo/metabolismo , Masculino , Microdiálisis , N-Metilaspartato/farmacología , Núcleo Accumbens/efectos de los fármacos , Racloprida/farmacología , Ratas , Ratas Wistar , Receptores de Dopamina D1/antagonistas & inhibidores , Estimulación QuímicaRESUMEN
Recently, we have shown that D1 and D2 receptors in the ventral hippocampus (VH) modulate both the locomotor activation and the increase in dopamine (DA) levels in the rat nucleus accumbens (NAc) induced by NMDA stimulation of the VH. In the present study we analyze the possible role of VH D1 and D2 receptors in the modulation of the cFos expression in NAc (core and shell subregions) and in dorsal striatum. This was assessed by immunohistochemical analysis of cFos expression in the rat brains after retro-dialysis application of NMDA (50mM, 10 min) into VH, in absence and in presence of either the D1/D5 receptor antagonist SCH 23390 (100 and 250 microM, 60 min) or the D2 receptor antagonist raclopride (100 and 250 microM, 60 min). NMDA induced a robust increase in the cFos expression in the NAc shell, both in the ipsilateral and contralateral side. No statistically significant increases were observed in the NAc core and in the dorsal striatum. Simultaneous application of SCH 23390 and NMDA into the VH attenuated the NMDA-evoked cFos expression in NAc shell. In contrast, raclopride had no significant effect. Our present results show that the NMDA receptor mediated effects in the VH require D1 receptors and suggest that DA in VH strongly modulates the excitatory outputs from this brain area.
Asunto(s)
Regulación de la Expresión Génica/fisiología , Genes fos/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Núcleo Accumbens/metabolismo , Receptores Dopaminérgicos/metabolismo , Animales , Benzazepinas/farmacología , Antagonistas de Dopamina/farmacología , Agonistas de Aminoácidos Excitadores/administración & dosificación , Agonistas de Aminoácidos Excitadores/farmacología , Inmunohistoquímica , Masculino , Microdiálisis , N-Metilaspartato/administración & dosificación , N-Metilaspartato/farmacología , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Racloprida/farmacología , Ratas , Ratas Wistar , Estimulación QuímicaRESUMEN
Peroral delivery of hydrophilic drugs is one of the greatest challenges in biopharmaceutical research. Hydrophilic drugs usually present low bioavailability after oral administration. One of the causes of this low bioavailability is their poor intestinal permeation through the paracellular pathway. This pathway is actually restricted by the presence of tight junctions at the apical side of the enterocytes. In the last few years, great interest has been focused on the structure and cellular regulation of tight junctions, materializing in more in-depth knowledge of this intestinal barrier. Simultaneously, and on the basis of this understanding, continuous efforts are being made to develop agents that can modulate tight junctions and magnify the paracellular permeability of hydrophilic compounds without causing significant intestinal damage. This review focuses on strategies to improve the paracellular permeation of poorly absorbed drugs as a way to enhance their bioavailability after oral administration. Most of the research on this subject has been carried out using in vitro models (mainly Caco-2 cell monolayers), which yield useful information on the potential effects and mechanisms of action of absorption-enhancing compounds. However, in vivo studies, which are much more scarce, are needed to confirm the effects of potential enhancers and to evaluate the suitability of including these compounds as excipients in drug formulation. We review the in vitro and in situ studies involving the most promising paracellular permeation enhancers (e.g., medium chain fatty acids and chitosan and its derivatives), analyzing the degree of drug absorption enhancement achieved, as well as the potential associated toxicity. The few studies performed in vivo are also presented. In addition, the findings of recent absorption enhancers, such as zonula occludens toxin or thiolated polymers, are reviewed.