Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Rep ; 12(1): 7599, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534669

RESUMEN

Hard-to-predict bursts of COVID-19 pandemic revealed significance of statistical modeling which would resolve spatio-temporal correlations over geographical areas, for example spread of the infection over a city with census tract granularity. In this manuscript, we provide algorithmic answers to the following two inter-related public health challenges of immense social impact which have not been adequately addressed (1) Inference Challenge assuming that there are N census blocks (nodes) in the city, and given an initial infection at any set of nodes, e.g. any N of possible single node infections, any [Formula: see text] of possible two node infections, etc, what is the probability for a subset of census blocks to become infected by the time the spread of the infection burst is stabilized? (2) Prevention Challenge What is the minimal control action one can take to minimize the infected part of the stabilized state footprint? To answer the challenges, we build a Graphical Model of pandemic of the attractive Ising (pair-wise, binary) type, where each node represents a census tract and each edge factor represents the strength of the pairwise interaction between a pair of nodes, e.g. representing the inter-node travel, road closure and related, and each local bias/field represents the community level of immunization, acceptance of the social distance and mask wearing practice, etc. Resolving the Inference Challenge requires finding the Maximum-A-Posteriory (MAP), i.e. most probable, state of the Ising Model constrained to the set of initially infected nodes. (An infected node is in the [Formula: see text] state and a node which remained safe is in the [Formula: see text] state.) We show that almost all attractive Ising Models on dense graphs result in either of the two possibilities (modes) for the MAP state: either all nodes which were not infected initially became infected, or all the initially uninfected nodes remain uninfected (susceptible). This bi-modal solution of the Inference Challenge allows us to re-state the Prevention Challenge as the following tractable convex programming: for the bare Ising Model with pair-wise and bias factors representing the system without prevention measures, such that the MAP state is fully infected for at least one of the initial infection patterns, find the closest, for example in [Formula: see text], [Formula: see text] or any other convexity-preserving norm, therefore prevention-optimal, set of factors resulting in all the MAP states of the Ising model, with the optimal prevention measures applied, to become safe. We have illustrated efficiency of the scheme on a quasi-realistic model of Seattle. Our experiments have also revealed useful features, such as sparsity of the prevention solution in the case of the [Formula: see text] norm, and also somehow unexpected features, such as localization of the sparse prevention solution at pair-wise links which are NOT these which are most utilized/traveled.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Modelos Estadísticos , Pandemias/prevención & control , Distanciamiento Físico , Salud Pública
2.
Sci Rep ; 11(1): 16383, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385475

RESUMEN

The increasing utility of specialized circuits and growing applications of optimization call for the development of efficient hardware accelerator for solving optimization problems. Hopfield neural network is a promising approach for solving combinatorial optimization problems due to the recent demonstrations of efficient mixed-signal implementation based on emerging non-volatile memory devices. Such mixed-signal accelerators also enable very efficient implementation of various annealing techniques, which are essential for finding optimal solutions. Here we propose a "weight annealing" approach, whose main idea is to ease convergence to the global minima by keeping the network close to its ground state. This is achieved by initially setting all synaptic weights to zero, thus ensuring a quick transition of the Hopfield network to its trivial global minima state and then gradually introducing weights during the annealing process. The extensive numerical simulations show that our approach leads to a better, on average, solutions for several representative combinatorial problems compared to prior Hopfield neural network solvers with chaotic or stochastic annealing. As a proof of concept, a 13-node graph partitioning problem and a 7-node maximum-weight independent set problem are solved experimentally using mixed-signal circuits based on, correspondingly, a 20 × 20 analog-grade TiO2 memristive crossbar and a 12 × 10 eFlash memory array.

3.
PLoS One ; 15(6): e0235307, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32579590

RESUMEN

We extend the classical SIR epidemic spread model by introducing the "quarantined" compartment. We solve (numerically) the differential equations that govern the extended model and quantify how quarantining "flattens the curve" for the proportion of infected population over time. Furthermore, we explore the potential of using drones to deliver tests, enabling mass-testing for the infection; we give a method to estimate the drone fleet needed to deliver the tests in a metropolitan area. Application of our models to COVID-19 spread in Sweden shows how the proposed methods could substantially decrease the peak number of infected people, almost without increasing the duration of the epidemic.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Brotes de Enfermedades , Modelos Biológicos , Neumonía Viral/epidemiología , Cuarentena , Tecnología de Sensores Remotos , Betacoronavirus , COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Suecia/epidemiología
4.
IEEE Trans Vis Comput Graph ; 19(12): 2179-88, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24051784

RESUMEN

We propose a novel approach of distance-based spatial clustering and contribute a heuristic computation of input parameters for guiding users in the search of interesting cluster constellations. We thereby combine computational geometry with interactive visualization into one coherent framework. Our approach entails displaying the results of the heuristics to users, as shown in Figure 1, providing a setting from which to start the exploration and data analysis. Addition interaction capabilities are available containing visual feedback for exploring further clustering options and is able to cope with noise in the data. We evaluate, and show the benefits of our approach on a sophisticated artificial dataset and demonstrate its usefulness on real-world data.


Asunto(s)
Algoritmos , Gráficos por Computador , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Interfaz Usuario-Computador , Simulación por Computador , Modelos Teóricos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA