Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Environ Microbiol ; 24(12): 5680-5689, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36053873

RESUMEN

Microbial interactions within resident communities are a major determinant of resistance to pathogen invasion. Yet, interactions vary with environmental conditions, raising the question of how community composition and environments interactively shape invasion resistance. Here, we use resource availability (RA) as a model parameter altering the resistance of model bacterial communities to invasion by the plant pathogenic bacterium Ralstonia solanacearum. We found that at high RA, interactions between resident bacterial species were mainly driven by the direct antagonism, in terms of the means of invader inhibition. Consequently, the competitive resident communities with a higher production of antibacterial were invaded to a lesser degree than facilitative communities. At low RA, bacteria produced little direct antagonist potential, but facilitative communities reached a relatively higher community productivity, which showed higher resistance to pathogen invasion than competitive communities with lower productivities. This framework may lay the basis to understand complex microbial interactions and biological invasion as modulated by the dynamic changes of environmental resource availability.


Asunto(s)
Bacterias , Ralstonia solanacearum , Bacterias/genética , Plantas , Interacciones Microbianas
2.
J Exp Bot ; 72(4): 1166-1180, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33080022

RESUMEN

Although widely used in ecology, trait-based approaches are seldom used to study agroecosystems. In particular, there is a need to evaluate how functional trait variability among varieties of a crop species compares to the variability among wild plant species and how variety selection can modify trait syndromes. Here, we quantified 18 above- and below-ground functional traits for 57 varieties of common wheat representative of different modern selection histories. We compared trait variability among varieties and among Pooideae species, and analyzed the effect of selection histories on trait values and trait syndromes. For traits under strong selection, trait variability among varieties was less than 10% of the variability observed among Pooideae species. However, for traits not directly selected, such as root N uptake capacity, the variability was up to 75% of the variability among Pooideae species. Ammonium absorption capacity by roots was counter-selected for conventional varieties compared with organic varieties and landraces. Artificial selection also altered some trait syndromes classically reported for Pooideae. Identifying traits that have high or low variability among varieties and characterizing the hidden effects of selection on trait values and syndromes will benefit the selection of varieties to be used especially for lower N input agroecosystems.


Asunto(s)
Ecología , Triticum , Fenotipo , Síndrome , Triticum/genética
3.
Ecol Lett ; 22(1): 149-158, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30460736

RESUMEN

While several studies have established a positive correlation between community diversity and invasion resistance, it is less clear how species interactions within resident communities shape this process. Here, we experimentally tested how antagonistic and facilitative pairwise interactions within resident model microbial communities predict invasion by the plant-pathogenic bacterium Ralstonia solanacearum. We found that facilitative resident community interactions promoted and antagonistic interactions suppressed invasions both in the lab and in the tomato plant rhizosphere. Crucially, pairwise interactions reliably explained observed invasion outcomes also in multispecies communities, and mechanistically, this was linked to direct inhibition of the invader by antagonistic communities (antibiosis), and to a lesser degree by resource competition between members of the resident community and the invader. Together, our findings suggest that the type and strength of pairwise interactions can reliably predict the outcome of invasions in more complex multispecies communities.


Asunto(s)
Microbiota , Rizosfera , Bacterias , Plantas , Dinámica Poblacional
4.
Mol Ecol ; 28(14): 3383-3394, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31177607

RESUMEN

Limestone areas across the world develop karstic caves, which are populated by a wide range of macro- and microorganisms. Many of these caves display Paleolithic art or outstanding speleothems, and in the last century they have been subjected to anthropization due to touristic management and intense human frequentation. Despite their cultural importance and associated conservation issues, the impact of anthropization on cave biodiversity is not known. Here, we show that anthropization is associated with specific cave biota modifications. We compared diversity in four pristine caves, four anthropized show caves, and the iconic Lascaux Cave with even stronger anthropization. The predominant microbial higher taxa were the same in all caves, but the most anthropized cave (Lascaux) was unique as it differed from the eight others by a higher proportion of Bacteroidetes bacteria and the absence of Euryarchaeota and Woesearchaeota archaea. Anthropization resulted in lower diversity and altered community structure for bacteria and archaea on cave walls, especially in Lascaux, but with a more limited effect on microeukaryotes and arthropods. Our findings fill a key gap in our understanding of the response of karstic communities to anthropization, by revealing that tourism-related anthropization impacts on the prokaryotic microbiome rather than on eukaryotic residents, and that it shapes cave biota irrespective of cave natural features.


Asunto(s)
Cuevas/microbiología , Microbiota , Biodiversidad , Células Eucariotas/metabolismo , Geografía , Humanos , Células Procariotas/metabolismo
5.
Nature ; 469(7328): 89-92, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21131946

RESUMEN

The relationship between biodiversity and ecosystem functioning (BEF) has become a cornerstone of community and ecosystem ecology and an essential criterion for making decisions in conservation biology and policy planning. It has recently been proposed that evolutionary history should influence the BEF relationship because it determines species traits and, thus, species' ability to exploit resources. Here we test this hypothesis by combining experimental evolution with a BEF experiment. We isolated 20 bacterial strains from a marine environment and evolved each to be generalists or specialists. We then tested the effect of evolutionary history on the strength of the BEF relationship with assemblages of 1 to 20 species constructed from the specialists, generalists and ancestors. Assemblages of generalists were more productive on average because of their superior ability to exploit the environmental heterogeneity. The slope of the BEF relationship was, however, stronger for the specialist assemblages because of enhanced niche complementarity. These results show how the BEF relationship depends critically on the legacy of past evolutionary events.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biodiversidad , Evolución Biológica , Ecosistema , Organismos Acuáticos/clasificación , Organismos Acuáticos/aislamiento & purificación , Organismos Acuáticos/fisiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Conservación de los Recursos Naturales , Modelos Biológicos , Tipificación Molecular , ARN Ribosómico 16S/genética , España , Especificidad de la Especie
6.
Environ Sci Technol ; 50(1): 338-48, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26651080

RESUMEN

Microbial communities have a key role for the performance of engineered ecosystems such as waste gas biofilters. Maintaining constant performance despite fluctuating environmental conditions is of prime interest, but it is highly challenging because the mechanisms that drive the response of microbial communities to disturbances still have to be disentangled. Here we demonstrate that the bioprocess performance and stability can be improved and reinforced in the face of disturbances, through a rationally predefined strategy of microbial resource management (MRM). This strategy was experimentally validated in replicated pilot-scale nitrifying gas-biofilters, for the two steps of nitrification. The associated biological mechanisms were unraveled through analysis of functions, abundances and community compositions for the major actors of nitrification in these biofilters, that is, ammonia-oxidizing bacteria (AOB) and Nitrobacter-like nitrite-oxidizers (NOB). Our MRM strategy, based on the application of successive, transient perturbations of increasing intensity, enabled to steer the nitrifier community in a favorable way through the selection of more resistant AOB and NOB sharing functional gene sequences close to those of, respectively, Nitrosomonas eutropha and Nitrobacter hamburgensis that are well adapted to high N load. The induced community shifts resulted in significant enhancement of nitrification resilience capacity following the intense perturbation.


Asunto(s)
Ecosistema , Consorcios Microbianos , Nitritos/metabolismo , Nitrobacter/metabolismo , Nitrosomonas/metabolismo , Amoníaco/metabolismo , Nitrificación
7.
Ecology ; 96(3): 788-99, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26236874

RESUMEN

It has long been recognized that plant species and soil microorganisms. are tightly linked, but understanding how different species vary in their effects on soil is currently limited. In this study, we identified those. plant characteristics (identity, specific functional traits, or resource acquisition strategy) that were the best predictors of nitrification and denitrification processes. Ten plant populations representing eight species collected from three European grassland sites were chosen for their contrasting plant trait values and resource acquisition strategies. For each individual plant, leaf and root traits and the associated potential microbial activities (i.e., potential denitrification rate [DEA], maximal nitrification rate [NEA], and NH4+ affinity of the microbial community [NHScom]) were measured at two fertilization levels under controlled growth conditions. Plant traits were powerful predictors of plant-microbe interactions, but relevant plant traits differed in relation to the microbial function studied. Whereas denitrification was linked to the relative growth rate of plants, nitrification was strongly correlated to root trait characteristics (specific root length, root nitrogen concentration, and plant affinity for NH4+) linked to plant N cycling. The leaf economics spectrum (LES) that commonly serves as an indicator of resource acquisition strategies was not correlated to microbial activity. These results suggest that the LES alone is not a good predictor of microbial activity, whereas root traits appeared critical in understanding plant-microbe interactions.


Asunto(s)
Achillea/fisiología , Nitrógeno/metabolismo , Poaceae/fisiología , Microbiología del Suelo , Austria , Desnitrificación , Inglaterra , Francia , Nitrificación , Suelo/química
8.
Proc Natl Acad Sci U S A ; 109(43): 17633-8, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045668

RESUMEN

The Antarctic and Arctic regions offer a unique opportunity to test factors shaping biogeography of marine microbial communities because these regions are geographically far apart, yet share similar selection pressures. Here, we report a comprehensive comparison of bacterioplankton diversity between polar oceans, using standardized methods for pyrosequencing the V6 region of the small subunit ribosomal (SSU) rRNA gene. Bacterial communities from lower latitude oceans were included, providing a global perspective. A clear difference between Southern and Arctic Ocean surface communities was evident, with 78% of operational taxonomic units (OTUs) unique to the Southern Ocean and 70% unique to the Arctic Ocean. Although polar ocean bacterial communities were more similar to each other than to lower latitude pelagic communities, analyses of depths, seasons, and coastal vs. open waters, the Southern and Arctic Ocean bacterioplankton communities consistently clustered separately from each other. Coastal surface Southern and Arctic Ocean communities were more dissimilar from their respective open ocean communities. In contrast, deep ocean communities differed less between poles and lower latitude deep waters and displayed different diversity patterns compared with the surface. In addition, estimated diversity (Chao1) for surface and deep communities did not correlate significantly with latitude or temperature. Our results suggest differences in environmental conditions at the poles and different selection mechanisms controlling surface and deep ocean community structure and diversity. Surface bacterioplankton may be subjected to more short-term, variable conditions, whereas deep communities appear to be structured by longer water-mass residence time and connectivity through ocean circulation.


Asunto(s)
Bacterias/aislamiento & purificación , Geografía , Biología Marina , Microbiología del Agua , Regiones Antárticas , Regiones Árticas , Bacterias/clasificación , Bacterias/genética , Filogenia , ARN Ribosómico/genética
9.
New Phytol ; 204(2): 408-23, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24995955

RESUMEN

Plant-soil feedbacks can influence plant growth and community structure by modifying soil biota and nutrients. Because most research has been performed at the species level and in monoculture, our ability to predict responses across species and in mixed communities is limited. As plant traits have been linked to both soil properties and plant growth, they may provide a useful approach for an understanding of feedbacks at a generic level. We measured how monocultures and mixtures of grassland plant species with differing traits responded to soil that had been conditioned by model grassland plant communities dominated by either slow- or fast-growing species. Soils conditioned by the fast-growing community had higher nitrogen availability than those conditioned by the slow-growing community; these changes influenced future plant growth. Effects were stronger, and plant traits had greater predictive power, in mixtures than in monocultures. In monoculture, all species produced more above-ground biomass in soil conditioned by the fast-growing community. In mixtures, slow-growing species produced more above-ground biomass, and fast-growing species produced more below-ground biomass, in soils conditioned by species with similar traits. The use of a plant trait-based approach may therefore improve our understanding of differential plant species responses to plant-soil feedbacks, especially in a mixed-species environment.


Asunto(s)
Retroalimentación Fisiológica , Desarrollo de la Planta , Microbiología del Suelo , Suelo/química , Biomasa , Ecosistema , Nitrógeno/metabolismo , Fenotipo , Brotes de la Planta , Especificidad de la Especie
10.
New Phytol ; 204(3): 620-630, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25059468

RESUMEN

Previous studies on the effect of secondary metabolites on the functioning of rhizosphere microbial communities have often focused on aspects of the nitrogen (N) cycle but have overlooked biological denitrification inhibition (BDI), which can affect plant N-nutrition. Here, we investigated the BDI by the compounds of Fallopia spp., an invasive weed shown to be associated with a low potential denitrification of the soil. Fallopia spp. extracts were characterized by chromatographic analysis and were used to test the BDI effects on the metabolic and respiratory activities of denitrifying bacteria, under aerobic and anaerobic (denitrification) conditions. The BDI of Fallopia spp. extracts was tested on a complex soil community by measuring denitrification enzyme activity (DEA), substrate induced respiration (SIR), as well as abundances of denitrifiers and total bacteria. In 15 strains of denitrifying bacteria, extracts led to a greater BDI (92%) than respiration inhibition (50%). Anaerobic metabolic activity reduction was correlated with catechin concentrations and the BDI was dose dependent. In soil, extracts reduced the DEA/SIR ratio without affecting the denitrifiers: total bacteria ratio. We show that secondary metabolite(s) from Fallopia spp. inhibit denitrification. This provides new insight into plant-soil interactions and improves our understanding of a plant's ability to shape microbial soil functioning.


Asunto(s)
Desnitrificación/fisiología , Extractos Vegetales/química , Polygonaceae/metabolismo , Pseudomonas/efectos de los fármacos , Aerobiosis , Anaerobiosis , Bioensayo , Especies Introducidas , Cinética , Estructura Molecular , Consumo de Oxígeno , Malezas , Pseudomonas/clasificación , Pseudomonas/genética , Suelo/química
11.
Imeta ; 3(1): e172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38868511

RESUMEN

We summarize here the use of SynComs in improving various dimensions of soil health, including fertility, pollutant removal, soil-borne disease suppression, and soil resilience; as well as a set of useful guidelines to assess and understand the principles for designing SynComs to enhance soil health. Finally, we discuss the next stages of SynComs applications, including highly diverse and multikingdom SynComs targeting several functions simultaneously.

12.
Ecol Evol ; 13(8): e10433, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37636864

RESUMEN

The effects of density are key in determining population dynamics, since they can positively or negatively affect the fitness of individuals. These effects have great relevance for polyphagous insects for which immature stages develop within a single site of finite feeding resources. Drosophila suzukii is a crop pest that induces severe economic losses for agricultural production; however, little is known about the effects of density on its life-history traits. In the present study, we (i) investigated the egg distribution resulting from females' egg-laying strategy and (ii) tested the immediate (on immatures) and delayed (on adults) effects of larval density on emergence rate, development time, potential fecundity, and adult size. The density used varied in a range between 1 and 50 larvae. We showed that 44.27% of the blueberries used for the oviposition assay contained between 1 and 11 eggs in aggregates. The high experimental density (50 larvae) has no immediate effect in the emergence rate but has effect on larval developmental time. This trait was involved in a trade-off with adult life-history traits: The time of larval development was reduced as larval density increased, but smaller and less fertile females were produced. Our results clearly highlight the consequences of larval crowding on the juveniles and adults of this fly.

13.
Environ Microbiol Rep ; 15(2): 80-91, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36424842

RESUMEN

Anthropization of Palaeolithic caves open for tourism may favour collembola invasion and result in the formation of black stains attributed to pigmented fungi. However, ecological processes underpinning black stain formation are not fully understood. Here, we tested the hypotheses that black stains from the Apse room of Lascaux Cave display a specific microbiota enriched in pigmented fungi, and that collembola thriving on the stains have the potential to consume and disseminate these black fungi. Metabarcoding showed that the microbiota of black stains and neighbouring unstained parts strongly differed, with in black stains a higher prevalence of Ochroconis and other pigmented fungi and the strong regression of Pseudomonas bacteria (whose isolates inhibited in vitro the growth of pigmented fungi). Isotopic analyses indicated that Folsomia candida collembola thriving on stains could feed on black stain in situ and assimilate the pigmented fungi they were fed with in vitro. They could carry these fungi and disseminate them when tested with complex black stains from Lascaux. This shows that black stain formation is linked to the development of pigmented fungi, which coincides with the elimination of antagonistic pseudomonads, and points towards a key role of F. candida collembola in the dynamics of pigmented fungi.


Asunto(s)
Artrópodos , Ascomicetos , Microbiota , Animales , Colorantes , Ascomicetos/genética , ADN de Hongos
14.
Mol Ecol ; 21(8): 1878-96, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22093148

RESUMEN

Aquatic environments harbour large and diverse microbial populations that ensure their functioning and sustainability. In the current context of global change, characterizing microbial diversity has become crucial, and new tools have been developed to overcome the methodological challenges posed by working with microbes in nature. The advent of Sanger sequencing and now next-generation sequencing technologies has enabled the resolution of microbial communities to an unprecedented degree of precision. However, to correctly interpret microbial diversity and its patterns this revolution must also consider conceptual and methodological matters. This review presents advances, gaps and caveats of these recent approaches when considering microorganisms in aquatic ecosystems. We also discuss potentials and limitations of the available methodologies, from water sampling to sequence analysis, and suggest alternative ways to incorporate results in a conceptual and methodological framework. Together, these methods will allow us to gain an unprecedented understanding of microbial diversity in aquatic ecosystems.


Asunto(s)
Archaea/genética , Bacterias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Microbiología del Agua , Biodiversidad , Biología Computacional/métodos , ADN de Archaea/análisis , ADN de Archaea/aislamiento & purificación , ADN Bacteriano/análisis , ADN Bacteriano/aislamiento & purificación , Ecosistema , Agua Dulce/microbiología , Agua de Mar/microbiología
15.
Biol Lett ; 8(4): 562-6, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22258446

RESUMEN

Although environmental filtering has been observed to influence the biodiversity patterns of marine bacterial communities, it was restricted to the regional scale and to the species level, leaving the main drivers unknown at large biogeographic scales and higher taxonomic levels. Bacterial communities with different species compositions may nevertheless share phylogenetic lineages, and phylogenetic turnover (PT) among those communities may be surprisingly low along any biogeographic or environmental gradient. Here, we investigated the relative influence of environmental filtering and geographical distance on the PT between marine bacterial communities living more than 8000 km apart in contrasted abiotic conditions. PT was high between communities and was more structured by local environmental factors than by geographical distance, suggesting the predominance of a lineage filtering process. Strong phenotype-environment mismatches observed in the ocean may surpass high connectivity between marine microbial communities.


Asunto(s)
Bacterias/genética , Biota , Ecosistema , Filogenia , ARN Bacteriano/análisis , Microbiología del Agua , Bacterias/clasificación , Clorofila/análisis , Clorofila A , Genes de ARNr , Geografía , Océanos y Mares , ARN Bacteriano/genética , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Salinidad , Especificidad de la Especie , Temperatura
16.
Sci Total Environ ; 816: 151492, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-34793801

RESUMEN

Microorganisms colonize caves extensively, and in caves open for tourism they may cause alterations on wall surfaces. This is a major concern in caves displaying Paleolithic art, which is usually fragile and may be irremediably damaged by microbial alterations. Therefore, many caves were closed for preservation purposes, e.g. Lascaux (France), Altamira (Spain), while others were never opened to the public to avoid microbial contamination, e.g. Chauvet Cave (France), etc. The recent development of high-throughput sequencing technologies allowed several descriptions of cave microbial diversity and prompted the writing of this review, which focuses on the cave microbiome for the three domains of life (Bacteria, Archaea, microeukaryotes), the impact of tourism-related anthropization on microorganisms in Paleolithic caves, and the development of microbial alterations on the walls of these caves. This review shows that the microbial phyla prevalent in pristine caves are similar to those evidenced in water, soil, plant and metazoan microbiomes, but specificities at lower taxonomic levels remain to be clarified. Most of the data relates to Bacteria and Fungi, while other microeukaryotes and Archaea are poorly documented. Tourism may cause shifts in the microbiota of Paleolithic caves, but larger-scale investigation are required as these shifts may differ from one cave to the next. Finally, different types of alterations can occur in caves, especially in Paleolithic caves. Many microorganisms potentially involved have been identified, but diversity analyses of these alterations have not always included a comparison with neighboring unaltered zones as controls, making such associations uncertain. It is expected that omics technologies will also allow a better understanding of the functional diversities of the cave microbiome. This will be needed to decipher microbiome dynamics in response to touristic frequentation, to guide cave management, and to identify the most appropriate reclamation approaches to mitigate microbial alterations in tourist Paleolithic caves.


Asunto(s)
Cuevas , Microbiota , Animales , Archaea , Bacterias , Hongos
17.
Microorganisms ; 10(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557702

RESUMEN

Lascaux Cave is a UNESCO site that was closed to the public following wall surface alterations. Most black stains that had formed on wall surface are stable or receding, but a new type of alteration visually quite different (termed dark zones) developed in Lascaux's Apse room in the last 15 years. Here, we tested the hypothesis that dark zones displayed a different microbial community than black stains previously documented in the same room, using metabarcoding (MiSeq sequencing). Indeed, dark zones, black stains and neighboring unstained parts displayed distinct microbial communities. However, similarly to what was observed in black stains, pigmented fungi such as Ochroconis (now Scolecobasidium) were more abundant and the bacteria Pseudomonas less abundant in dark zones than in unstained parts. The collembola Folsomia candida, which can disseminate microorganisms involved in black stain development, was also present on dark zones. Illumina sequencing evidenced Ochroconis (Scolecobasidium) in all collembola samples from dark zones, as in collembola from black stains. This study shows that the microbial properties of dark zones are peculiar, yet dark zones display a number of microbial resemblances with black stains, which suggests a possible role of collembola in promoting these two types of microbial alterations on wall surfaces.

18.
Imeta ; 1(3): e37, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38868709

RESUMEN

Biochar amendment is acknowledged to favor plant resistance against soil-borne diseases. Although plant-beneficial bacteria enrichment in the rhizosphere is often proposed to be associated with this protection, the mechanism behind this stimulating effect remains unelucidated. Here, we tested whether biochar promotes plants to recruit beneficial bacteria to the rhizosphere, and thus develop a disease-suppressive rhizosphere microbiome. In a pot experiment, biochar amendment decreased tomato Fusarium wilt disease severity. Using a transplanting rhizosphere microbiome experiment, we showed that biochar enhanced the suppressiveness of tomato rhizosphere microbiome against Fusarium wilt disease. High-throughput sequencing of 16S ribosomal RNA gene and in vitro cultures further indicated that the recruited suppressive rhizosphere microbiome was associated with the increase of plant-beneficial bacteria, such as Pseudomonas sp. This amendment also enhanced the in vitro chemoattraction and biofilm promotion activity of tomato root exudates. Collectively, our results demonstrate that biochar amendment induces tomato seedlings to efficiently recruit a disease-suppressive rhizosphere microbiome against Fusarium wilt.

19.
ISME J ; 16(3): 868-875, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34671104

RESUMEN

The rhizosphere microbiome forms a first line of defense against soilborne pathogens. To date, most microbiome enhancement strategies have relied on bioaugmentation with antagonistic microorganisms that directly inhibit pathogens. Previous studies have shown that some root-associated bacteria are able to facilitate pathogen growth. We therefore hypothesized that inhibiting such pathogen helpers may help reduce pathogen densities. We examined tripartite interactions between a model pathogen, Ralstonia solanacearum, two model helper strains and a collection of 46 bacterial isolates recovered from the tomato rhizosphere. This system allowed us to examine the importance of direct (effects of rhizobacteria on pathogen growth) and indirect (effects of rhizobacteria on helper growth) pathways affecting pathogen growth. We found that the interaction between rhizosphere isolates and the helper strains was the major determinant of pathogen suppression both in vitro and in vivo. We therefore propose that controlling microbiome composition to prevent the growth of pathogen helpers may become part of sustainable strategies for pathogen control.


Asunto(s)
Microbiota , Ralstonia solanacearum , Solanum lycopersicum , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Ralstonia solanacearum/fisiología , Rizosfera
20.
Bioinformatics ; 25(6): 736-42, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19223450

RESUMEN

MOTIVATION: The most common approach to estimate microbial diversity is based on the analysis of DNA sequences of specific target genes including ribosomal genes. Commonly, the sequences are grouped into operational taxonomic units based on genetic distance (sequence similarity) instead of genetic change (patristic distance). This method may fail to adequately identify clusters of evolutionary related sequences and it provides no information on the phylogenetic structure of the community. An ease-of-use web application for this purpose has been missing. RESULTS: We have developed RAMI, which clusters related nodes in a phylogenetic tree based on the patristic distance. RAMI also produces indices of cluster properties and other indices used in population and community studies on-the-fly. AVAILABILITY: RAMI is licensed under GNU GPL and can be run or downloaded from http://www.acgt.se/online.html. SUPPLEMENTARY INFORMATION: http://www.acgt.se/RAMI/SuppInfo.


Asunto(s)
ADN Bacteriano/química , Filogenia , Programas Informáticos , Bacterias/genética , ADN Ribosómico/química , Internet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA