Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 19(9): e1011672, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37721965

RESUMEN

Brucellosis, caused by facultative, intracellular Brucella spp., often results in chronic and/or lifelong infection. Therefore, Brucella must employ mechanisms to subvert adaptive immunity to cause chronic infection. B lymphocytes enhance susceptibility to infection with Brucella spp. though the mechanisms remain unclear. Here we investigated the role of antibody secretion, B cell receptor (BCR) specificity, and B cell antigen presentation on susceptibility to B. melitensis. We report that mice unable to secrete antibody do not display altered resistance to Brucella. However, animals with B cells that are unable to recognize Brucella through their BCR are resistant to infection. In addition, B cell MHCII expression enhances susceptibility to infection in a CD4+ T cell-dependent manner, and we found that follicular B cells are sufficient to inhibit CD4+ T cell-mediated immunity against Brucella. B cells promote development of T follicular helper (TFH) and T follicular regulatory (TFR) cells during Brucella infection. Inhibition of B cell and CD4+ T cell interaction via CD40L blockade enhances resistance to Brucella in a B cell dependent manner concomitant with suppression of TFH and TFR differentiation. Conversely, PD-1 blockade increases Brucella burdens in a B and CD4+ T cell dependent manner while augmenting T regulatory (TReg) and TFR responses. Intriguingly, TFR deficiency enhances resistance to Brucella via a B cell dependent, but antibody independent mechanism. Collectively, these results demonstrate B cells support TFR responses that promote susceptibility to Brucella infection independent of the antibody response.

2.
J Infect Dis ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38586904

RESUMEN

The impact of vaccine-induced immune responses on host metabolite availability has not been well studied. Here we show prior vaccination alters the metabolic profile of mice challenged with Brucella melitensis. In particular, glucose levels were reduced in vaccinated mice in an antibody-dependent manner. We also found the glucose transporter gene, gluP, plays a lesser role in B. melitensis virulence in vaccinated wild-type mice relative to vaccinated mice unable to secrete antibodies. These data indicate vaccine-elicited antibodies protect the host in part by restricting glucose availability. Moreover, Brucella and other pathogens may need to employ different metabolic strategies in vaccinated hosts.

3.
Am J Pathol ; 193(9): 1170-1184, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37263343

RESUMEN

Brucellosis is a globally significant zoonotic disease. Human patients with brucellosis develop recurrent fever and focal complications, including arthritis and neurobrucellosis. The current study investigated the role of innate lymphoid cells (ILCs) in the pathogenesis of focal brucellosis caused by Brucella melitensis. After footpad infection, natural killer cells and ILC1 cells both limited joint colonization by Brucella. Mice lacking natural killer cells, and in particular mice lacking all ILCs, also developed marked arthritis after footpad infection. Following pulmonary infection, mice lacking adaptive immune cells and ILCs developed arthritis, neurologic complications, and meningitis. Adaptive immune cells and ILCs both limited colonization of the brain by Brucella following pulmonary infection. Transcriptional analysis of Brucella-infected brains revealed marked up-regulation of genes associated with inflammation and interferon responses, as well as down-regulation of genes associated with neurologic function. Type II interferon deficiency resulted in colonization of the brain by Brucella, but mice lacking both type I and type II interferon signaling more rapidly developed clinical signs of neurobrucellosis, exhibited hippocampal neuronal loss, and had higher levels of Brucella in their brains than mice lacking type II interferon signaling alone. Collectively, these findings indicate ILCs and interferons play an important role in prevention of focal complications during Brucella infection, and that mice with deficiencies in ILCs or interferons can be used to study pathogenesis of neurobrucellosis.


Asunto(s)
Artritis , Brucelosis , Humanos , Animales , Ratones , Interferones , Interferón gamma , Inmunidad Innata , Linfocitos/patología , Brucelosis/complicaciones , Brucelosis/prevención & control , Artritis/complicaciones
4.
Infect Immun ; 89(10): e0015621, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34125603

RESUMEN

Brucellosis is one of the most common global zoonoses and is caused by facultative intracellular bacteria of the genus Brucella. Numerous studies have found that MyD88 signaling contributes to protection against Brucella; however, the underlying mechanism has not been entirely defined. Here, we show that MyD88 signaling in hematopoietic cells contributes both to inflammation and to control of Brucella melitensis infection in vivo. While the protective role of MyD88 in Brucella infection has often been attributed to promotion of gamma interferon (IFN-γ) production, we found that MyD88 signaling restricts host colonization by B. melitensis even in the absence of IFN-γ. In vitro, we show that MyD88 promotes macrophage glycolysis in response to B. melitensis. Interestingly, a B. melitensis mutant lacking the glucose transporter, GluP, was more highly attenuated in MyD88-/- than in wild-type mice, suggesting MyD88 deficiency results in an increased availability of glucose in vivo, which Brucella can exploit via GluP. Metabolite profiling of macrophages identified several metabolites regulated by MyD88 in response to B. melitensis, including itaconate. Subsequently, we found that itaconate has antibacterial effects against Brucella and also regulates the production of proinflammatory cytokines in B. melitensis-infected macrophages. Mice lacking the ability to produce itaconate were also more susceptible to B. melitensis in vivo. Collectively, our findings indicate that MyD88-dependent changes in host metabolism contribute to control of Brucella infection.


Asunto(s)
Brucelosis/metabolismo , Glucosa/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Succinatos/metabolismo , Animales , Brucella melitensis/patogenicidad , Brucelosis/microbiología , Citocinas/metabolismo , Glucólisis/fisiología , Interferón gamma/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología
5.
Infect Immun ; 88(5)2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32071068

RESUMEN

Brucella spp. are facultative intracellular bacteria notorious for their ability to induce a chronic, and often lifelong, infection known as brucellosis. To date, no licensed vaccine exists for prevention of human disease, and mechanisms underlying chronic illness and immune evasion remain elusive. We and others have observed that B cell-deficient mice challenged with Brucella display reduced bacterial burden following infection, but the underlying mechanism has not been clearly defined. Here, we show that at 1 month postinfection, B cell deficiency alone enhanced resistance to splenic infection ∼100-fold; however, combined B and T cell deficiency did not impact bacterial burden, indicating that B cells only enhance susceptibility to infection when T cells are present. Therefore, we investigated whether B cells inhibit T cell-mediated protection against Brucella Using B and T cell-deficient Rag1-/- animals as recipients, we demonstrate that adoptive transfer of CD4+ T cells alone confers marked protection against Brucella melitensis that is abrogated by cotransfer of B cells. Interestingly, depletion of CD4+ T cells from B cell-deficient, but not wild-type, mice enhanced susceptibility to infection, further confirming that CD4+ T cell-mediated immunity against Brucella is inhibited by B cells. In addition, we found that the ability of B cells to suppress CD4+ T cell-mediated immunity and modulate CD4+ T cell effector responses during infection was major histocompatibility complex class II (MHCII)-dependent. Collectively, these findings indicate that B cells modulate CD4+ T cell function through an MHCII-dependent mechanism which enhances susceptibility to Brucella infection.


Asunto(s)
Linfocitos B/inmunología , Brucella melitensis/inmunología , Brucelosis/inmunología , Linfocitos T CD4-Positivos/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Traslado Adoptivo/métodos , Animales , Vacuna contra la Brucelosis/inmunología , Proteínas de Homeodominio/inmunología , Ratones , Ratones Endogámicos C57BL , Bazo/inmunología
6.
mSphere ; 9(3): e0075023, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38349167

RESUMEN

Brucellosis, caused by the bacterium Brucella, poses a significant global threat to both animal and human health. Although commercial live Brucella vaccines including S19, RB51, and Rev1 are available for animals, their unsuitability for human use and incomplete efficacy in animals necessitate the further study of vaccine-mediated immunity to Brucella. In this study, we employed in vivo B-cell depletion, as well as immunodeficient and transgenic mouse models, to comprehensively investigate the roles of B cells, antigen uptake and presentation, antibody production, and class switching in the context of S19-mediated immunity against brucellosis. We found that antibody production, and in particular secretory IgM plays a protective role in S19-mediated immunity against virulent Brucella melitensis early after the challenge in a manner associated with complement activation. While T follicular helper cell deficiency dampened IgG production and vaccine efficacy at later stages of the challenge, this effect appeared to be independent of antibody production and rather was associated with altered T-cell function. By contrast, B-cell MHCII expression negatively impacted vaccine efficacy at later timepoints after the challenge. In addition, B-cell depletion after vaccination, but before the challenge, enhanced S19-mediated protection against brucellosis, suggesting a deleterious role of B cells during the challenge phase. Collectively, our findings indicate antibody production is protective, while B-cell MHCII expression is deleterious, to live vaccine-mediated immunity against brucellosis. IMPORTANCE: Brucella is a neglected zoonotic pathogen with a worldwide distribution. Our study delves into B-cell effector functions in live vaccine-mediated immunity against brucellosis. Notably, we found antibody production, particularly secretory IgM, confers protection against virulent Brucella melitensis in vaccinated mice, which was associated with complement activation. By contrast, B-cell MHCII expression negatively impacted vaccine efficacy. In addition, B-cell depletion after vaccination, but before the B. melitensis challenge, enhanced protection against infection, suggesting a detrimental B-cell role during the challenge phase. Interestingly, deficiency of T follicular helper cells, which are crucial for aiding germinal center B cells, dampened vaccine efficacy at later stages of challenge independent of antibody production. This study underscores contrasting and phase-dependent roles of B-cell effector functions in vaccine-mediated immunity against Brucella.


Asunto(s)
Vacuna contra la Brucelosis , Brucella melitensis , Brucelosis , Ratones , Animales , Humanos , Brucella abortus , Brucelosis/prevención & control , Linfocitos B , Vacunas Atenuadas , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA