Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Appl Environ Microbiol ; 90(1): e0195123, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38131671

RESUMEN

The platform chemical 2,3-butanediol (2,3-BDO) is used to derive products, such as 1,3-butadiene and methyl ethyl ketone, for the chemical and fuel production industries. Efficient microbial 2,3-BDO production at industrial scales has not been achieved yet for various reasons, including product inhibition to host organisms, mixed stereospecificity in product formation, and dependence on expensive substrates (i.e., glucose). In this study, we explore engineering of a 2,3-BDO pathway in Caldicellulosiruptor bescii, an extremely thermophilic (optimal growth temperature = 78°C) and anaerobic bacterium that can break down crystalline cellulose and hemicellulose into fermentable C5 and C6 sugars. In addition, C. bescii grows on unpretreated plant biomass, such as switchgrass. Biosynthesis of 2,3-BDO involves three steps: two molecules of pyruvate are condensed into acetolactate; acetolactate is decarboxylated to acetoin, and finally, acetoin is reduced to 2,3-BDO. C. bescii natively produces acetoin; therefore, in order to complete the 2,3-BDO biosynthetic pathway, C. bescii was engineered to produce a secondary alcohol dehydrogenase (sADH) to catalyze the final step. Two previously characterized, thermostable sADH enzymes with high affinity for acetoin, one from a bacterium and one from an archaeon, were tested independently. When either sADH was present in C. bescii, the recombinant strains were able to produce up to 2.5-mM 2,3-BDO from crystalline cellulose and xylan and 0.2-mM 2,3-BDO directly from unpretreated switchgrass. This serves as the basis for higher yields and productivities, and to this end, limiting factors and potential genetic targets for further optimization were assessed using the genome-scale metabolic model of C. bescii.IMPORTANCELignocellulosic plant biomass as the substrate for microbial synthesis of 2,3-butanediol is one of the major keys toward cost-effective bio-based production of this chemical at an industrial scale. However, deconstruction of biomass to release the sugars for microbial growth currently requires expensive thermochemical and enzymatic pretreatments. In this study, the thermo-cellulolytic bacterium Caldicellulosiruptor bescii was successfully engineered to produce 2,3-butanediol from cellulose, xylan, and directly from unpretreated switchgrass. Genome-scale metabolic modeling of C. bescii was applied to adjust carbon and redox fluxes to maximize productivity of 2,3-butanediol, thereby revealing bottlenecks that require genetic modifications.


Asunto(s)
Butileno Glicoles , Caldicellulosiruptor , Lactatos , Ingeniería Metabólica , Xilanos , Biomasa , Acetoína , Composición de Base , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Celulosa/metabolismo , Clostridiales/metabolismo , Bacterias/metabolismo , Plantas/metabolismo , Azúcares
2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34686601

RESUMEN

Tungsten (W) is a metal that is generally thought to be seldom used in biology. We show here that a W-containing oxidoreductase (WOR) family is diverse and widespread in the microbial world. Surprisingly, WORs, along with the tungstate-specific transporter Tup, are abundant in the human gut microbiome, which contains 24 phylogenetically distinct WOR types. Two model gut microbes containing six types of WOR and Tup were shown to assimilate W. Two of the WORs were natively purified and found to contain W. The enzymes catalyzed the conversion of toxic aldehydes to the corresponding acid, with one WOR carrying out an electron bifurcation reaction coupling aldehyde oxidation to the simultaneous reduction of NAD+ and of the redox protein ferredoxin. Such aldehydes are present in cooked foods and are produced as antimicrobials by gut microbiome metabolism. This aldehyde detoxification strategy is dependent on the availability of W to the microbe. The functions of other WORs in the gut microbiome that do not oxidize aldehydes remain unknown. W is generally beyond detection (<6 parts per billion) in common foods and at picomolar concentrations in drinking water, suggesting that W availability could limit some gut microbial functions and might be an overlooked micronutrient.


Asunto(s)
Aldehídos/metabolismo , Alimentos , Microbioma Gastrointestinal , Tungsteno/metabolismo , Aldehído Oxidorreductasas/metabolismo , Humanos , Oxidación-Reducción
3.
Environ Microbiol ; 24(11): 5546-5560, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36053980

RESUMEN

Bacillus cereus strain CPT56D-587-MTF (CPTF) was isolated from the highly contaminated Oak Ridge Reservation (ORR) subsurface. This site is contaminated with high levels of nitric acid and multiple heavy metals. Amplicon sequencing of the 16S rRNA genes (V4 region) in sediment from this area revealed an amplicon sequence variant (ASV) with 100% identity to the CPTF 16S rRNA sequence. Notably, this CPTF-matching ASV had the highest relative abundance in this community survey, with a median relative abundance of 3.77% and comprised 20%-40% of reads in some samples. Pangenomic analysis revealed that strain CPTF has expanded genomic content compared to other B. cereus species-largely due to plasmid acquisition and expansion of transposable elements. This suggests that these features are important for rapid adaptation to native environmental stressors. We connected genotype to phenotype in the context of the unique geochemistry of the site. These analyses revealed that certain genes (e.g. nitrate reductase, heavy metal efflux pumps) that allow this strain to successfully occupy the geochemically heterogenous microniches of its native site are characteristic of the B. cereus species while others such as acid tolerance are mobile genetic element associated and are generally unique to strain CPTF.


Asunto(s)
Bacillus cereus , Metales Pesados , ARN Ribosómico 16S/genética , Bacillus cereus/genética , Genómica , Filogenia
4.
Appl Environ Microbiol ; 87(21): e0103721, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34432491

RESUMEN

To uncover metal toxicity targets and defense mechanisms of the facultative anaerobe Pantoea sp. strain MT58 (MT58), we used a multiomic strategy combining two global techniques, random bar code transposon site sequencing (RB-TnSeq) and activity-based metabolomics. MT58 is a metal-tolerant Oak Ridge Reservation (ORR) environmental isolate that was enriched in the presence of metals at concentrations measured in contaminated groundwater at an ORR nuclear waste site. The effects of three chemically different metals found at elevated concentrations in the ORR contaminated environment were investigated: the cation Al3+, the oxyanion CrO42-, and the oxycation UO22+. Both global techniques were applied using all three metals under both aerobic and anaerobic conditions to elucidate metal interactions mediated through the activity of metabolites and key genes/proteins. These revealed that Al3+ binds intracellular arginine, CrO42- enters the cell through sulfate transporters and oxidizes intracellular reduced thiols, and membrane-bound lipopolysaccharides protect the cell from UO22+ toxicity. In addition, the Tol outer membrane system contributed to the protection of cellular integrity from the toxic effects of all three metals. Likewise, we found evidence of regulation of lipid content in membranes under metal stress. Individually, RB-TnSeq and metabolomics are powerful tools to explore the impact various stresses have on biological systems. Here, we show that together they can be used synergistically to identify the molecular actors and mechanisms of these pertubations to an organism, furthering our understanding of how living systems interact with their environment. IMPORTANCE Studying microbial interactions with their environment can lead to a deeper understanding of biological molecular mechanisms. In this study, two global techniques, RB-TnSeq and activity metabolomics, were successfully used to probe the interactions between a metal-resistant microorganism, Pantoea sp. strain MT58, and metals contaminating a site where the organism can be located. A number of novel metal-microbe interactions were uncovered, including Al3+ toxicity targeting arginine synthesis, which could lead to a deeper understanding of the impact Al3+ contamination has on microbial communities as well as its impact on higher-level organisms, including plants for whom Al3+ contamination is an issue. Using multiomic approaches like the one described here is a way to further our understanding of microbial interactions and their impacts on the environment overall.


Asunto(s)
Elementos Transponibles de ADN , Metabolómica , Metales/toxicidad , Pantoea/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Pantoea/metabolismo
5.
J Biol Chem ; 294(25): 9995-10005, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31097544

RESUMEN

Caldicellulosiruptor bescii is an extremely thermophilic, cellulolytic bacterium with a growth optimum at 78 °C and is the most thermophilic cellulose degrader known. It is an attractive target for biotechnological applications, but metabolic engineering will require an in-depth understanding of its primary pathways. A previous analysis of its genome uncovered evidence that C. bescii may have a completely uncharacterized aspect to its redox metabolism, involving a tungsten-containing oxidoreductase of unknown function. Herein, we purified and characterized this new member of the aldehyde ferredoxin oxidoreductase family of tungstoenzymes. We show that it is a heterodimeric glyceraldehyde-3-phosphate (GAP) ferredoxin oxidoreductase (GOR) present not only in all known Caldicellulosiruptor species, but also in 44 mostly anaerobic bacterial genera. GOR is phylogenetically distinct from the monomeric GAP-oxidizing enzyme found previously in several Archaea. We found that its large subunit (GOR-L) contains a single tungstopterin site and one iron-sulfur [4Fe-4S] cluster, that the small subunit (GOR-S) contains four [4Fe-4S] clusters, and that GOR uses ferredoxin as an electron acceptor. Deletion of either subunit resulted in a distinct growth phenotype on both C5 and C6 sugars, with an increased lag phase, but higher cell densities. Using metabolomics and kinetic analyses, we show that GOR functions in parallel with the conventional GAP dehydrogenase, providing an alternative ferredoxin-dependent glycolytic pathway. These two pathways likely facilitate the recycling of reduced redox carriers (NADH and ferredoxin) in response to environmental H2 concentrations. This metabolic flexibility has important implications for the future engineering of this and related species.


Asunto(s)
Biomasa , Firmicutes/metabolismo , Gliceraldehído 3-Fosfato Deshidrogenasa (NADP+)/metabolismo , Gliceraldehído 3-Fosfato/química , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Glucólisis , Caldicellulosiruptor , Firmicutes/crecimiento & desarrollo , Gliceraldehído 3-Fosfato/metabolismo , Metaboloma , Oxidación-Reducción , Filogenia
6.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32859593

RESUMEN

Arsenate is a notorious toxicant that is known to disrupt multiple biochemical pathways. Many microorganisms have developed mechanisms to detoxify arsenate using the ArsC-type arsenate reductase, and some even use arsenate as a terminal electron acceptor for respiration involving arsenate respiratory reductase (Arr). ArsC-type reductases have been studied extensively, but the phylogenetically unrelated Arr system is less investigated and has not been characterized from Archaea Here, we heterologously expressed the genes encoding Arr from the crenarchaeon Pyrobaculum aerophilum in the euryarchaeon Pyrococcus furiosus, both of which grow optimally near 100°C. Recombinant P. furiosus was grown on molybdenum (Mo)- or tungsten (W)-containing medium, and two types of recombinant Arr enzymes were purified, one containing Mo (Arr-Mo) and one containing W (Arr-W). Purified Arr-Mo had a 140-fold higher specific activity in arsenate [As(V)] reduction than Arr-W, and Arr-Mo also reduced arsenite [As(III)]. The P. furiosus strain expressing Arr-Mo (the Arr strain) was able to use arsenate as a terminal electron acceptor during growth on peptides. In addition, the Arr strain had increased tolerance compared to that of the parent strain to arsenate and also, surprisingly, to arsenite. Compared to the parent, the Arr strain accumulated intracellularly almost an order of magnitude more arsenic when cells were grown in the presence of arsenite. X-ray absorption spectroscopy (XAS) results suggest that the Arr strain of P. furiosus improves its tolerance to arsenite by increasing production of less-toxic arsenate and nontoxic methylated arsenicals compared to that by the parent.IMPORTANCE Arsenate respiratory reductases (Arr) are much less characterized than the detoxifying arsenate reductase system. The heterologous expression and characterization of an Arr from Pyrobaculum aerophilum in Pyrococcus furiosus provides new insights into the function of this enzyme. From in vivo studies, production of Arr not only enabled P. furiosus to use arsenate [As(V)] as a terminal electron acceptor, it also provided the organism with a higher resistance to arsenate and also, surprisingly, to arsenite [As(III)]. In contrast to the tungsten-containing oxidoreductase enzymes natively produced by P. furiosus, recombinant P. aerophilum Arr was much more active with molybdenum than with tungsten. It is also, to our knowledge, the only characterized Arr to be active with both molybdenum and tungsten in the active site.


Asunto(s)
Proteínas Arqueales/genética , Arseniato Reductasas/genética , Regulación de la Expresión Génica Arqueal , Pyrococcus furiosus/genética , Thermoproteaceae/genética , Proteínas Arqueales/metabolismo , Arseniato Reductasas/metabolismo , Arsénico/metabolismo , Microorganismos Modificados Genéticamente/enzimología , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/metabolismo , Pyrococcus furiosus/enzimología , Pyrococcus furiosus/metabolismo
7.
Extremophiles ; 24(1): 53-62, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31278423

RESUMEN

The genome of the archaeon Pyrobaculum aerophilum (Topt ~ 100 °C) contains an operon (PAE2859-2861) encoding a putative pyranopterin-containing oxidoreductase of unknown function and metal content. These genes (with one gene modified to encode a His-affinity tag) were inserted into the fermentative anaerobic archaeon, Pyrococcus furiosus (Topt ~ 100 °C). Dye-linked assays of cytoplasmic extracts from recombinant P. furiosus show that the P. aerophilum enzyme is a thiosulfate reductase (Tsr) and reduces thiosulfate but not polysulfide. The enzyme (Tsr-Mo) from molybdenum-grown cells contains Mo (Mo:W = 9:1) while the enzyme (Tsr-W) from tungsten-grown cells contains mainly W (Mo:W = 1:6). Purified Tsr-Mo has over ten times the activity (Vmax = 1580 vs. 141 µmol min-1 mg-1) and twice the affinity for thiosulfate (Km = ~ 100 vs. ~ 200 µM) than Tsr-W and is reduced at a lower potential (Epeak = - 255 vs - 402 mV). Tsr-Mo and Tsr-W proteins are heterodimers lacking the membrane anchor subunit (PAE2861). Recombinant P. furiosus expressing P. aerophilum Tsr could not use thiosulfate as a terminal electron acceptor. P. furiosus contains five pyranopterin-containing enzymes, all of which utilize W. P. aerophilum Tsr-Mo is the first example of an active Mo-containing enzyme produced in P. furiosus.


Asunto(s)
Pyrobaculum , Pyrococcus furiosus , Sulfurtransferasas , Tungsteno
8.
J Biol Chem ; 293(43): 16687-16696, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30181217

RESUMEN

Hyperthermophilic archaea contain a hydrogen gas-evolving,respiratory membrane-bound NiFe-hydrogenase (MBH) that is very closely related to the aerobic respiratory complex I. During growth on elemental sulfur (S°), these microorganisms also produce a homologous membrane-bound complex (MBX), which generates H2S. MBX evolutionarily links MBH to complex I, but its catalytic function is unknown. Herein, we show that MBX reduces the sulfane sulfur of polysulfides by using ferredoxin (Fd) as the electron donor, and we rename it membrane-bound sulfane reductase (MBS). Two forms of affinity-tagged MBS were purified from genetically engineered Pyrococcus furiosus (a hyperthermophilic archaea species): the 13-subunit holoenzyme (S-MBS) and a cytoplasmic 4-subunit catalytic subcomplex (C-MBS). S-MBS and C-MBS reduced dimethyl trisulfide (DMTS) with comparable Km (∼490 µm) and Vmax values (12 µmol/min/mg). The MBS catalytic subunit (MbsL), but not that of complex I (NuoD), retains two of four NiFe-coordinating cysteine residues of MBH. However, these cysteine residues were not involved in MBS catalysis because a mutant P. furiosus strain (MbsLC85A/C385A) grew normally with S°. The products of the DMTS reduction and properties of polysulfides indicated that in the physiological reaction, MBS uses Fd (Eo' = -480 mV) to reduce sulfane sulfur (Eo' -260 mV) and cleave organic (RS n R, n ≥ 3) and anionic polysulfides (S n2-, n ≥ 4) but that it does not produce H2S. Based on homology to MBH, MBS also creates an ion gradient for ATP synthesis. This work establishes the electrochemical reaction catalyzed by MBS that is intermediate in the evolution from proton- to quinone-reducing respiratory complexes.


Asunto(s)
Proteínas Arqueales/metabolismo , Membrana Celular/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Proteínas de la Membrana/metabolismo , Oxidorreductasas/metabolismo , Pyrococcus furiosus/enzimología , Sulfuros/química , Proteínas Arqueales/genética , Dominio Catalítico , Complejo I de Transporte de Electrón/genética , Proteínas de la Membrana/genética , Oxidación-Reducción , Oxidorreductasas/genética , Pyrococcus furiosus/crecimiento & desarrollo
9.
Environ Microbiol ; 21(1): 152-163, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30289197

RESUMEN

Anthropogenic nitrate contamination is a serious problem in many natural environments. Nitrate removal by microbial action is dependent on the metal molybdenum (Mo), which is required by nitrate reductase for denitrification and dissimilatory nitrate reduction to ammonium. The soluble form of Mo, molybdate (MoO4 2- ), is incorporated into and adsorbed by iron (Fe) and aluminium (Al) (oxy) hydroxide minerals. Herein we used Oak Ridge Reservation (ORR) as a model nitrate-contaminated acidic environment to investigate whether the formation of Fe- and Al-precipitates could impede microbial nitrate removal by depleting Mo. We demonstrate that Fe and Al mineral formation that occurs as the pH of acidic synthetic groundwater is increased, decreases soluble Mo to low picomolar concentrations, a process proposed to mimic environmental diffusion of acidic contaminated groundwater. Analysis of ORR sediments revealed recalcitrant Mo in the contaminated core that co-occurred with Fe and Al, consistent with Mo scavenging by Fe/Al precipitates. Nitrate removal by ORR isolate Pseudomonas fluorescens N2A2 is virtually abolished by Fe/Al precipitate-induced Mo depletion. The depletion of naturally occurring Mo in nitrate- and Fe/Al-contaminated acidic environments like ORR or acid mine drainage sites has the potential to impede microbial-based nitrate reduction thereby extending the duration of nitrate in the environment.


Asunto(s)
Aluminio/química , Ambiente , Hierro/química , Molibdeno/química , Ciclo del Nitrógeno , Contaminantes Ambientales/química , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/farmacología , Sedimentos Geológicos/química , Agua Subterránea/química , Microbiota/efectos de los fármacos , Molibdeno/metabolismo , Molibdeno/farmacología , Nitrato-Reductasa/metabolismo , Nitratos/metabolismo , Pseudomonas fluorescens/efectos de los fármacos , Pseudomonas fluorescens/metabolismo
10.
Appl Environ Microbiol ; 85(17)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31253673

RESUMEN

Contamination of environments with nitrate generated by industrial processes and the use of nitrogen-containing fertilizers is a growing problem worldwide. While nitrate can be removed from contaminated areas by microbial denitrification, nitrate frequently occurs with other contaminants, such as heavy metals, that have the potential to impede the process. Here, nitrate-reducing microorganisms were enriched and isolated from both groundwater and sediments at the Oak Ridge Reservation (ORR) using concentrations of nitrate and metals (Al, Mn, Fe, Co, Ni, Cu, Cd, and U) similar to those observed in a contaminated environment at ORR. Seven new metal-resistant, nitrate-reducing strains were characterized, and their distribution across both noncontaminated and contaminated areas at ORR was examined. While the seven strains have various pH ranges for growth, carbon source preferences, and degrees of resistance to individual and combinations of metals, all were able to reduce nitrate at similar rates both in the presence and absence of the mixture of metals found in the contaminated ORR environment. Four strains were identified in groundwater samples at different ORR locations by exact 16S RNA sequence variant analysis, and all four were found in both noncontaminated and contaminated areas. By using environmentally relevant metal concentrations, we successfully isolated multiple organisms from both ORR noncontaminated and contaminated environments that are capable of reducing nitrate in the presence of extreme mixed-metal contamination.IMPORTANCE Nitrate contamination is a global issue that affects groundwater quality. In some cases, cocontamination of groundwater with nitrate and mixtures of heavy metals could decrease microbially mediated nitrate removal, thereby increasing the duration of nitrate contamination. Here, we used metal and nitrate concentrations that are present in a contaminated site at the Oak Ridge Reservation to isolate seven metal-resistant strains. All were able to reduce nitrate in the presence of high concentrations of a mixture of heavy metals. Four of seven strains were located in pristine as well as contaminated sites at the Oak Ridge Reservation. Further study of these nitrate-reducing strains will uncover mechanisms of resistance to multiple metals that will increase our understanding of the effect of nitrate and metal contamination on groundwater microbial communities.


Asunto(s)
Bacterias/metabolismo , Desnitrificación , Resistencia a Medicamentos , Agua Subterránea/microbiología , Metales Pesados/metabolismo , Contaminantes Químicos del Agua/metabolismo , Bacterias/efectos de los fármacos , Agua Subterránea/química , Tennessee
11.
Extremophiles ; 22(4): 629-638, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29797090

RESUMEN

Regulated control of both homologous and heterologous gene expression is essential for precise genetic manipulation and metabolic engineering of target microorganisms. However, there are often no options available for inducible promoters when working with non-model microorganisms. These include extremely thermophilic, cellulolytic bacteria that are of interest for renewable lignocellulosic conversion to biofuels and chemicals. In fact, improvements to the genetic systems in these organisms often cease once transformation is achieved. This present study expands the tools available for genetically engineering Caldicellulosiruptor bescii, the most thermophilic cellulose-degrader known growing up to 90 °C on unpretreated plant biomass. A native xylose-inducible (P xi ) promoter was utilized to control the expression of the reporter gene (ldh) encoding lactate dehydrogenase. The P xi -ldh construct resulted in a both increased ldh expression (20-fold higher) and lactate dehydrogenase activity (32-fold higher) in the presence of xylose compared to when glucose was used as a substrate. Finally, lactate production during growth of the recombinant C. bescii strain was proportional to the initial xylose concentration, showing that tunable expression of genes is now possible using this xylose-inducible system. This study represents a major step in the use of C. bescii as a potential platform microorganism for biotechnological applications using renewable biomass.


Asunto(s)
Firmicutes/genética , Microbiología Industrial/métodos , Regiones Promotoras Genéticas , Xilosa/metabolismo , Biotransformación , Celulosa/metabolismo , Firmicutes/efectos de los fármacos , Firmicutes/crecimiento & desarrollo , Firmicutes/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Termotolerancia , Xilosa/farmacología
12.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27913415

RESUMEN

Cell suspensions of Pelosinus sp. strain UFO1 were previously shown, using spectroscopic analysis, to sequester uranium as U(IV) complexed with carboxyl and phosphoryl group ligands on proteins. The goal of our present study was to characterize the proteins involved in uranium binding. Virtually all of the uranium in UFO1 cells was associated with a heterodimeric protein, which was termed the uranium-binding complex (UBC). The UBC was composed of two S-layer domain proteins encoded by UFO1_4202 and UFO1_4203. Samples of UBC purified from the membrane fraction contained 3.3 U atoms/heterodimer, but significant amounts of phosphate were not detected. The UBC had an estimated molecular mass by gel filtration chromatography of 15 MDa, and it was proposed to contain 150 heterodimers (UFO1_4203 and UFO1_4202) and about 500 uranium atoms. The UBC was also the dominant extracellular protein, but when purified from the growth medium, it contained only 0.3 U atoms/heterodimer. The two genes encoding the UBC were among the most highly expressed genes within the UFO1 genome, and their expressions were unchanged by the presence or absence of uranium. Therefore, the UBC appears to be constitutively expressed and is the first line of defense against uranium, including by secretion into the extracellular medium. Although S-layer proteins were previously shown to bind U(VI), here we showed that U(IV) binds to S-layer proteins, we identified the proteins involved, and we quantitated the amount of uranium bound. IMPORTANCE: Widespread uranium contamination from industrial sources poses hazards to human health and to the environment. Herein, we identified a highly abundant uranium-binding complex (UBC) from Pelosinus sp. strain UFO1. The complex makes up the primary protein component of the S-layer of strain UFO1 and binds 3.3 atoms of U(IV) per heterodimer. While other bacteria have been shown to bind U(VI) on their S-layer, we demonstrate here an example of U(IV) bound by an S-layer complex. The UBC provides a potential tool for the microbiological sequestration of uranium for the cleaning of contaminated environments.


Asunto(s)
Biodegradación Ambiental , Firmicutes/metabolismo , Glicoproteínas de Membrana/metabolismo , Contaminantes Radiactivos del Suelo/metabolismo , Uranio/metabolismo , Contaminación Ambiental , Firmicutes/crecimiento & desarrollo , Unión Proteica/fisiología
13.
Appl Environ Microbiol ; 83(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28476773

RESUMEN

Caldicellulosiruptor bescii is the most thermophilic cellulose degrader known and is of great interest because of its ability to degrade nonpretreated plant biomass. For biotechnological applications, an efficient genetic system is required to engineer it to convert plant biomass into desired products. To date, two different genetically tractable lineages of C. bescii strains have been generated. The first (JWCB005) is based on a random deletion within the pyrimidine biosynthesis genes pyrFA, and the second (MACB1018) is based on the targeted deletion of pyrE, making use of a kanamycin resistance marker. Importantly, an active insertion element, ISCbe4, was discovered in C. bescii when it disrupted the gene for lactate dehydrogenase (ldh) in strain JWCB018, constructed in the JWCB005 background. Additional instances of ISCbe4 movement in other strains of this lineage are presented herein. These observations raise concerns about the genetic stability of such strains and their use as metabolic engineering platforms. In order to investigate genome stability in engineered strains of C. bescii from the two lineages, genome sequencing and Southern blot analyses were performed. The evidence presented shows a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 elements within the genome of JWCB005, leading to massive genome rearrangements in its daughter strain, JWCB018. Such dramatic effects were not evident in the newer MACB1018 lineage, indicating that JWCB005 and its daughter strains are not suitable for metabolic engineering purposes in C. bescii Furthermore, a facile approach for assessing genomic stability in C. bescii has been established.IMPORTANCECaldicellulosiruptor bescii is a cellulolytic extremely thermophilic bacterium of great interest for metabolic engineering efforts geared toward lignocellulosic biofuel and bio-based chemical production. Genetic technology in C. bescii has led to the development of two uracil auxotrophic genetic background strains for metabolic engineering. We show that strains derived from the genetic background containing a random deletion in uracil biosynthesis genes (pyrFA) have a dramatic increase in the number of single nucleotide polymorphisms, insertions/deletions, and ISCbe4 insertion elements in their genomes compared to the wild type. At least one daughter strain of this lineage also contains large-scale genome rearrangements that are flanked by these ISCbe4 elements. In contrast, strains developed from the second background strain developed using a targeted deletion strategy of the uracil biosynthetic gene pyrE have a stable genome structure, making them preferable for future metabolic engineering studies.


Asunto(s)
Genoma Bacteriano , Inestabilidad Genómica , Bacterias Grampositivas/genética , Lignina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ingeniería Genética , Bacterias Grampositivas/metabolismo , Calor
14.
Proc Natl Acad Sci U S A ; 111(49): 17618-23, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25368184

RESUMEN

Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 °C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways.


Asunto(s)
Aldehído Oxidorreductasas/genética , Biocombustibles , Etanol/química , Ingeniería de Proteínas/métodos , Pyrococcus furiosus/genética , Acetatos/química , Aldehído Oxidorreductasas/metabolismo , Aldehídos/química , Monóxido de Carbono/química , Escherichia coli/metabolismo , Fermentación , Maltosa/química , Mutagénesis Insercional , Temperatura
15.
Proc Natl Acad Sci U S A ; 111(43): E4568-76, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25316790

RESUMEN

Protein framework alterations in heritable Cu, Zn superoxide dismutase (SOD) mutants cause misassembly and aggregation in cells affected by the motor neuron disease ALS. However, the mechanistic relationship between superoxide dismutase 1 (SOD1) mutations and human disease is controversial, with many hypotheses postulated for the propensity of specific SOD mutants to cause ALS. Here, we experimentally identify distinguishing attributes of ALS mutant SOD proteins that correlate with clinical severity by applying solution biophysical techniques to six ALS mutants at human SOD hotspot glycine 93. A small-angle X-ray scattering (SAXS) assay and other structural methods assessed aggregation propensity by defining the size and shape of fibrillar SOD aggregates after mild biochemical perturbations. Inductively coupled plasma MS quantified metal ion binding stoichiometry, and pulsed dipolar ESR spectroscopy evaluated the Cu(2+) binding site and defined cross-dimer copper-copper distance distributions. Importantly, we find that copper deficiency in these mutants promotes aggregation in a manner strikingly consistent with their clinical severities. G93 mutants seem to properly incorporate metal ions under physiological conditions when assisted by the copper chaperone but release copper under destabilizing conditions more readily than the WT enzyme. Altered intradimer flexibility in ALS mutants may cause differential metal retention and promote distinct aggregation trends observed for mutant proteins in vitro and in ALS patients. Combined biophysical and structural results test and link copper retention to the framework destabilization hypothesis as a unifying general mechanism for both SOD aggregation and ALS disease progression, with implications for disease severity and therapeutic intervention strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Mutación/genética , Agregación Patológica de Proteínas/enzimología , Agregación Patológica de Proteínas/genética , Superóxido Dismutasa/genética , Ácidos/metabolismo , Esclerosis Amiotrófica Lateral/genética , Cobre/farmacología , Cristalografía por Rayos X , Ácido Edético/farmacología , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Fenotipo , Sustancias Protectoras/farmacología , Dispersión del Ángulo Pequeño , Soluciones , Superóxido Dismutasa/química , Superóxido Dismutasa-1
16.
Anal Chem ; 88(19): 9753-9758, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27560777

RESUMEN

Active data screening is an integral part of many scientific activities, and mobile technologies have greatly facilitated this process by minimizing the reliance on large hardware instrumentation. In order to meet with the increasingly growing field of metabolomics and heavy workload of data processing, we designed the first remote metabolomic data screening platform for mobile devices. Two mobile applications (apps), XCMS Mobile and METLIN Mobile, facilitate access to XCMS and METLIN, which are the most important components in the computer-based XCMS Online platforms. These mobile apps allow for the visualization and analysis of metabolic data throughout the entire analytical process. Specifically, XCMS Mobile and METLIN Mobile provide the capabilities for remote monitoring of data processing, real time notifications for the data processing, visualization and interactive analysis of processed data (e.g., cloud plots, principle component analysis, box-plots, extracted ion chromatograms, and hierarchical cluster analysis), and database searching for metabolite identification. These apps, available on Apple iOS and Google Android operating systems, allow for the migration of metabolomic research onto mobile devices for better accessibility beyond direct instrument operation. The utility of XCMS Mobile and METLIN Mobile functionalities was developed and is demonstrated here through the metabolomic LC-MS analyses of stem cells, colon cancer, aging, and bacterial metabolism.


Asunto(s)
Internet , Metabolómica , Aplicaciones Móviles , Teléfono Inteligente , Cromatografía Liquida , Interpretación Estadística de Datos , Humanos , Espectrometría de Masas , Análisis de Componente Principal
17.
Appl Environ Microbiol ; 82(1): 51-61, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26452555

RESUMEN

Enzymes of the denitrification pathway play an important role in the global nitrogen cycle, including release of nitrous oxide, an ozone-depleting greenhouse gas. In addition, nitric oxide reductase, maturation factors, and proteins associated with nitric oxide detoxification are used by pathogens to combat nitric oxide release by host immune systems. While the core reductases that catalyze the conversion of nitrate to dinitrogen are well understood at a mechanistic level, there are many peripheral proteins required for denitrification whose basic function is unclear. A bar-coded transposon DNA library from Pseudomonas stutzeri strain RCH2 was grown under denitrifying conditions, using nitrate or nitrite as an electron acceptor, and also under molybdenum limitation conditions, with nitrate as the electron acceptor. Analysis of sequencing results from these growths yielded gene fitness data for 3,307 of the 4,265 protein-encoding genes present in strain RCH2. The insights presented here contribute to our understanding of how peripheral proteins contribute to a fully functioning denitrification pathway. We propose a new low-affinity molybdate transporter, OatABC, and show that differential regulation is observed for two MoaA homologs involved in molybdenum cofactor biosynthesis. We also propose that NnrS may function as a membrane-bound NO sensor. The dominant HemN paralog involved in heme biosynthesis is identified, and a CheR homolog is proposed to function in nitrate chemotaxis. In addition, new insights are provided into nitrite reductase redundancy, nitric oxide reductase maturation, nitrous oxide reductase maturation, and regulation.


Asunto(s)
Proteínas Bacterianas/genética , Pseudomonas stutzeri/genética , Proteínas Bacterianas/metabolismo , Desnitrificación , Mutación , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Pseudomonas stutzeri/enzimología , Pseudomonas stutzeri/metabolismo
18.
Nature ; 466(7307): 779-82, 2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20639861

RESUMEN

Metal ion cofactors afford proteins virtually unlimited catalytic potential, enable electron transfer reactions and have a great impact on protein stability. Consequently, metalloproteins have key roles in most biological processes, including respiration (iron and copper), photosynthesis (manganese) and drug metabolism (iron). Yet, predicting from genome sequence the numbers and types of metal an organism assimilates from its environment or uses in its metalloproteome is currently impossible because metal coordination sites are diverse and poorly recognized. We present here a robust, metal-based approach to determine all metals an organism assimilates and identify its metalloproteins on a genome-wide scale. This shifts the focus from classical protein-based purification to metal-based identification and purification by liquid chromatography, high-throughput tandem mass spectrometry (HT-MS/MS) and inductively coupled plasma mass spectrometry (ICP-MS) to characterize cytoplasmic metalloproteins from an exemplary microorganism (Pyrococcus furiosus). Of 343 metal peaks in chromatography fractions, 158 did not match any predicted metalloprotein. Unassigned peaks included metals known to be used (cobalt, iron, nickel, tungsten and zinc; 83 peaks) plus metals the organism was not thought to assimilate (lead, manganese, molybdenum, uranium and vanadium; 75 peaks). Purification of eight of 158 unexpected metal peaks yielded four novel nickel- and molybdenum-containing proteins, whereas four purified proteins contained sub-stoichiometric amounts of misincorporated lead and uranium. Analyses of two additional microorganisms (Escherichia coli and Sulfolobus solfataricus) revealed species-specific assimilation of yet more unexpected metals. Metalloproteomes are therefore much more extensive and diverse than previously recognized, and promise to provide key insights for cell biology, microbial growth and toxicity mechanisms.


Asunto(s)
Proteínas Bacterianas/análisis , Metaloproteínas/análisis , Metaloproteínas/química , Metales/análisis , Proteoma/análisis , Pyrococcus furiosus/química , Proteínas Bacterianas/química , Cromatografía Liquida , Escherichia coli/química , Metales/química , Metales/metabolismo , Proteoma/química , Proteómica , Pyrococcus furiosus/metabolismo , Sulfolobus solfataricus/química , Espectrometría de Masas en Tándem
20.
Appl Environ Microbiol ; 81(20): 7339-47, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26276113

RESUMEN

Caldicellulosiruptor bescii grows optimally at 78°C and is able to decompose high concentrations of lignocellulosic plant biomass without the need for thermochemical pretreatment. C. bescii ferments both C5 and C6 sugars primarily to hydrogen gas, lactate, acetate, and CO2 and is of particular interest for metabolic engineering applications given the recent availability of a genetic system. Developing optimal strains for technological use requires a detailed understanding of primary metabolism, particularly when the goal is to divert all available reductant (electrons) toward highly reduced products such as biofuels. During an analysis of the C. bescii genome sequence for oxidoreductase-type enzymes, evidence was uncovered to suggest that the primary redox metabolism of C. bescii has a completely uncharacterized aspect involving tungsten, a rarely used element in biology. An active tungsten utilization pathway in C. bescii was demonstrated by the heterologous production of a tungsten-requiring, aldehyde-oxidizing enzyme (AOR) from the hyperthermophilic archaeon Pyrococcus furiosus. Furthermore, C. bescii also contains a tungsten-based AOR-type enzyme, here termed XOR, which is phylogenetically unique, representing a completely new member of the AOR tungstoenzyme family. Moreover, in C. bescii, XOR represents ca. 2% of the cytoplasmic protein. XOR is proposed to play a key, but as yet undetermined, role in the primary redox metabolism of this cellulolytic microorganism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterias Grampositivas/enzimología , Bacterias Grampositivas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Tungsteno/metabolismo , Aldehídos/metabolismo , Oxidación-Reducción , Pyrococcus furiosus/enzimología , Pyrococcus furiosus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA