Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(21): e2322270121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753515

RESUMEN

The kagome metal CsV[Formula: see text]Sb[Formula: see text] is an ideal platform to study the interplay between topology and electron correlation. To understand the fermiology of CsV[Formula: see text]Sb[Formula: see text], intensive quantum oscillation (QO) studies at ambient pressure have been conducted. However, due to the Fermi surface reconstruction by the complicated charge density wave (CDW) order, the QO spectrum is exceedingly complex, hindering a complete understanding of the fermiology. Here, we directly map the Fermi surface of the pristine CsV[Formula: see text]Sb[Formula: see text] by measuring Shubnikov-de Haas QOs up to 29 T under pressure, where the CDW order is completely suppressed. The QO spectrum of the pristine CsV[Formula: see text]Sb[Formula: see text] is significantly simpler than the one in the CDW phase, and the detected oscillation frequencies agree well with our density functional theory calculations. In particular, a frequency as large as 8,200 T is detected. Pressure-dependent QO studies further reveal a weak but noticeable enhancement of the quasiparticle effective masses on approaching the critical pressure where the CDW order disappears, hinting at the presence of quantum fluctuations. Our high-pressure QO results reveal the large, unreconstructed Fermi surface of CsV[Formula: see text]Sb[Formula: see text], paving the way to understanding the parent state of this intriguing metal in which the electrons can be organized into different ordered states.

2.
Adv Sci (Weinh) ; : e2410099, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39412082

RESUMEN

Developing strategies to systematically increase the critical current, the threshold current below which the superconductivity exists, is an important goal of materials science. Here, the concept of quantum phase transition is employed to enhance the critical current of a kagome superconductor CsV3Sb5, which exhibits a charge density wave (CDW) and superconductivity that are both affected by hydrostatic pressure. As the CDW phase is rapidly suppressed under pressure, a large enhancement in the self-field critical current (Ic, sf) is recorded. The observation of a peak-like enhancement of Ic, sf at the zero-temperature limit (Ic, sf(0)) centered at p* ≈ 20 kbar, the same pressure where the CDW phase transition vanishes, further provides strong evidence of a zero-temperature quantum anomaly in this class of pressure-tuned superconductor. Such a peak in Ic, sf(0) resembles the findings in other well-established quantum-critical superconductors, hinting at the presence of enhanced quantum fluctuations associated with the CDW phase in CsV3Sb5.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA