Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 19(1): 85-97, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29167569

RESUMEN

The hierarchy of human hemopoietic progenitor cells that produce lymphoid and granulocytic-monocytic (myeloid) lineages is unclear. Multiple progenitor populations produce lymphoid and myeloid cells, but they remain incompletely characterized. Here we demonstrated that lympho-myeloid progenitor populations in cord blood - lymphoid-primed multi-potential progenitors (LMPPs), granulocyte-macrophage progenitors (GMPs) and multi-lymphoid progenitors (MLPs) - were functionally and transcriptionally distinct and heterogeneous at the clonal level, with progenitors of many different functional potentials present. Although most progenitors had the potential to develop into only one mature cell type ('uni-lineage potential'), bi- and rarer multi-lineage progenitors were present among LMPPs, GMPs and MLPs. Those findings, coupled with single-cell expression analyses, suggest that a continuum of progenitors execute lymphoid and myeloid differentiation, rather than only uni-lineage progenitors' being present downstream of stem cells.


Asunto(s)
Diferenciación Celular/genética , Perfilación de la Expresión Génica/métodos , Células Progenitoras Linfoides/metabolismo , Células Progenitoras Mieloides/metabolismo , Análisis de la Célula Individual/métodos , Animales , Linaje de la Célula/genética , Separación Celular/métodos , Células Cultivadas , Hematopoyesis/genética , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Ratones , Trasplante Heterólogo
2.
Semin Cell Dev Biol ; 127: 59-67, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35125239

RESUMEN

Haematopoietic stem and progenitor cells emerge from specialized haemogenic endothelial cells in select vascular beds during embryonic development. Specification and commitment to the blood lineage, however, occur before endothelial cells are endowed with haemogenic competence, at the time of mesoderm patterning and production of endothelial cell progenitors (angioblasts). Whilst early blood cell fate specification has long been recognized, very little is known about the mechanisms that induce endothelial cell diversification and progressive acquisition of a blood identity by a subset of these cells. Here, we review the endothelial origin of the haematopoietic system and the complex developmental journey of blood-fated angioblasts. We discuss how recent technological advances will be instrumental to examine the diversity of the embryonic anatomical niches, signaling pathways and downstream epigenetic and transcriptional processes controlling endothelial cell heterogeneity and blood cell fate specification. Ultimately, this will give essential insights into the ontogeny of the cells giving rise to haematopoietic stem cells, that may aid in the development of novel strategies for their in vitro production for clinical purposes.


Asunto(s)
Hemangioblastos , Diferenciación Celular , Linaje de la Célula , Endotelio , Femenino , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas , Humanos , Mesodermo/metabolismo , Embarazo
3.
Haematologica ; 106(4): 1106-1119, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32527952

RESUMEN

The megakaryocyte/erythroid Transient Myeloproliferative Disorder (TMD) in newborns with Down Syndrome (DS) occurs when N-terminal truncating mutations of the hemopoietic transcription factor GATA1, that produce GATA1short protein (GATA1s), are acquired early in development. Prior work has shown that murine GATA1s, by itself, causes a transient yolk sac myeloproliferative disorder. However, it is unclear where in the hemopoietic cellular hierarchy GATA1s exerts its effects to produce this myeloproliferative state. Here, through a detailed examination of hemopoiesis from murine GATA1s ES cells and GATA1s embryos we define defects in erythroid and megakaryocytic differentiation that occur relatively late in hemopoiesis. GATA1s causes an arrest late in erythroid differentiation in vivo, and even more profoundly in ES-cell derived cultures, with a marked reduction of Ter-119 cells and reduced erythroid gene expression. In megakaryopoiesis, GATA1s causes a differentiation delay at a specific stage, with accumulation of immature, kit-expressing CD41hi megakaryocytic cells. In this specific megakaryocytic compartment, there are increased numbers of GATA1s cells in S-phase of cell cycle and reduced number of apoptotic cells compared to GATA1 cells in the same cell compartment. There is also a delay in maturation of these immature GATA1s megakaryocytic lineage cells compared to GATA1 cells at the same stage of differentiation. Finally, even when GATA1s megakaryocytic cells mature, they mature aberrantly with altered megakaryocyte-specific gene expression and activity of the mature megakaryocyte enzyme, acetylcholinesterase. These studies pinpoint the hemopoietic compartment where GATA1s megakaryocyte myeloproliferation occurs, defining where molecular studies should now be focussed to understand the oncogenic action of GATA1s.


Asunto(s)
Síndrome de Down , Reacción Leucemoide , Animales , Diferenciación Celular , Factor de Transcripción GATA1/genética , Humanos , Recién Nacido , Megacariocitos , Ratones
4.
Blood ; 129(15): 2051-2060, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28179281

RESUMEN

SCL/TAL1 (stem cell leukemia/T-cell acute lymphoblastic leukemia [T-ALL] 1) is an essential transcription factor in normal and malignant hematopoiesis. It is required for specification of the blood program during development, adult hematopoietic stem cell survival and quiescence, and terminal maturation of select blood lineages. Following ectopic expression, SCL contributes to oncogenesis in T-ALL. Remarkably, SCL's activities are all mediated through nucleation of a core quaternary protein complex (SCL:E-protein:LMO1/2 [LIM domain only 1 or 2]:LDB1 [LIM domain-binding protein 1]) and dynamic recruitment of conserved combinatorial associations of additional regulators in a lineage- and stage-specific context. The finely tuned control of SCL's regulatory functions (lineage priming, activation, and repression of gene expression programs) provides insight into fundamental developmental and transcriptional mechanisms, and highlights mechanistic parallels between normal and oncogenic processes. Importantly, recent discoveries are paving the way to the development of innovative therapeutic opportunities in SCL+ T-ALL.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/biosíntesis , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Regulación Leucémica de la Expresión Génica , Células Madre Hematopoyéticas/patología , Humanos , Proteínas con Dominio LIM/biosíntesis , Proteínas con Dominio LIM/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Proteínas Proto-Oncogénicas/biosíntesis , Proteínas Proto-Oncogénicas/genética , Proteína 1 de la Leucemia Linfocítica T Aguda , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
5.
Nucleic Acids Res ; 41(9): 4938-48, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23519611

RESUMEN

We report the genomic occupancy profiles of the key hematopoietic transcription factor GATA-1 in pro-erythroblasts and mature erythroid cells fractionated from day E12.5 mouse fetal liver cells. Integration of GATA-1 occupancy profiles with available genome-wide transcription factor and epigenetic profiles assayed in fetal liver cells enabled as to evaluate GATA-1 involvement in modulating local chromatin structure of target genes during erythroid differentiation. Our results suggest that GATA-1 associates preferentially with changes of specific epigenetic modifications, such as H4K16, H3K27 acetylation and H3K4 di-methylation. Furthermore, we used random forest (RF) non-linear regression to predict changes in the expression levels of GATA-1 target genes based on the genomic features available for pro-erythroblasts and mature fetal liver-derived erythroid cells. Remarkably, our prediction model explained a high proportion of 62% of variation in gene expression. Hierarchical clustering of the proximity values calculated by the RF model produced a clear separation of upregulated versus downregulated genes and a further separation of downregulated genes in two distinct groups. Thus, our study of GATA-1 genome-wide occupancy profiles in mouse primary erythroid cells and their integration with global epigenetic marks reveals three clusters of GATA-1 gene targets that are associated with specific epigenetic signatures and functional characteristics.


Asunto(s)
Epigénesis Genética , Eritropoyesis/genética , Factor de Transcripción GATA1/metabolismo , Hígado/metabolismo , Animales , Células Cultivadas , Células Eritroides/metabolismo , Feto , Genoma , Histonas/metabolismo , Hígado/citología , Hígado/embriología , Ratones
6.
Genome Res ; 20(8): 1064-83, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20566737

RESUMEN

Coordination of cellular processes through the establishment of tissue-specific gene expression programs is essential for lineage maturation. The basic helix-loop-helix hemopoietic transcriptional regulator TAL1 (formerly SCL) is required for terminal differentiation of red blood cells. To gain insight into TAL1 function and mechanisms of action in erythropoiesis, we performed ChIP-sequencing and gene expression analyses from primary fetal liver erythroid cells. We show that TAL1 coordinates expression of genes in most known red cell-specific processes. The majority of TAL1's genomic targets require direct DNA-binding activity. However, one-fifth of TAL1's target sequences, mainly among those showing high affinity for TAL1, can recruit the factor independently of its DNA binding activity. An unbiased DNA motif search of sequences bound by TAL1 identified CAGNTG as TAL1-preferred E-box motif in erythroid cells. Novel motifs were also characterized that may help distinguish activated from repressed genes and suggest a new mechanism by which TAL1 may be recruited to DNA. Finally, analysis of recruitment of GATA1, a protein partner of TAL1, to sequences occupied by TAL1 suggests that TAL1's binding is necessary prior or simultaneous to that of GATA1. This work provides the framework to study regulatory networks leading to erythroid terminal maturation and to model mechanisms of action of tissue-specific transcription factors.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Eritroides/metabolismo , Eritropoyesis/genética , Regulación de la Expresión Génica , Genoma , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Animales , Secuencia de Bases , Elementos E-Box/genética , Expresión Génica , Técnicas de Sustitución del Gen , Estudio de Asociación del Genoma Completo , Ratones , Datos de Secuencia Molecular , Proteína 1 de la Leucemia Linfocítica T Aguda
7.
Blood ; 117(7): 2146-56, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21076045

RESUMEN

The LIM only protein 2 (LMO2) is a key regulator of hematopoietic stem cell development whose ectopic expression in T cells leads to the onset of acute lymphoblastic leukemia. Through its LIM domains, LMO2 is thought to function as the scaffold for a DNA-binding transcription regulator complex, including the basic helix-loop-helix proteins SCL/TAL1 and E47, the zinc finger protein GATA-1, and LIM-domain interacting protein LDB1. To understand the role of LMO2 in the formation of this complex and ultimately to dissect its function in normal and aberrant hematopoiesis, we solved the crystal structure of LMO2 in complex with the LID domain of LDB1 at 2.4 Å resolution. We observe a largely unstructured LMO2 kept in register by the LID binding both LIM domains. Comparison of independently determined crystal structures of LMO2 reveals large movements around a conserved hinge between the LIM domains. We demonstrate that such conformational flexibility is necessary for binding of LMO2 to its partner protein SCL/TAL1 in vitro and for the function of this complex in vivo. These results, together with molecular docking and analysis of evolutionarily conserved residues, yield the first structural model of the DNA-binding complex containing LMO2, LDB1, SCL/TAL1, and GATA-1.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Metaloproteínas/química , Metaloproteínas/genética , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Oncogenes , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Cartilla de ADN/genética , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Factor de Transcripción GATA1/química , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Hematopoyesis/genética , Hematopoyesis/fisiología , Humanos , Técnicas In Vitro , Proteínas con Dominio LIM , Metaloproteínas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Mutagénesis Sitio-Dirigida , Proteínas Oncogénicas/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Electricidad Estática , Proteína 1 de la Leucemia Linfocítica T Aguda , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Pez Cebra/embriología , Pez Cebra/genética
8.
Blood ; 118(3): 723-35, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21596846

RESUMEN

Megakaryopoiesis is a complex process that involves major cellular and nuclear changes and relies on controlled coordination of cellular proliferation and differentiation. These mechanisms are orchestrated in part by transcriptional regulators. The key hematopoietic transcription factor stem cell leukemia (SCL)/TAL1 is required in early hematopoietic progenitors for specification of the megakaryocytic lineage. These early functions have, so far, prevented full investigation of its role in megakaryocyte development in loss-of-function studies. Here, we report that SCL critically controls terminal megakaryocyte maturation. In vivo deletion of Scl specifically in the megakaryocytic lineage affects all key attributes of megakaryocyte progenitors (MkPs), namely, proliferation, ploidization, cytoplasmic maturation, and platelet release. Genome-wide expression analysis reveals increased expression of the cell-cycle regulator p21 in Scl-deleted MkPs. Importantly, p21 knockdown-mediated rescue of Scl-mutant MkPs shows full restoration of cell-cycle progression and partial rescue of the nuclear and cytoplasmic maturation defects. Therefore, SCL-mediated transcriptional control of p21 is essential for terminal maturation of MkPs. Our study provides a mechanistic link between a major hematopoietic transcriptional regulator, cell-cycle progression, and megakaryocytic differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Madre Hematopoyéticas/fisiología , Megacariocitos/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Trombocitopenia/fisiopatología , Trombopoyesis/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células de la Médula Ósea/fisiología , Células de la Médula Ósea/ultraestructura , División Celular/fisiología , Linaje de la Célula/fisiología , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Citoplasma/fisiología , Técnicas de Silenciamiento del Gen , Células Madre Hematopoyéticas/ultraestructura , Megacariocitos/ultraestructura , Ratones , Microscopía Electrónica , Poliploidía , Proteínas Proto-Oncogénicas/genética , Proteína 1 de la Leucemia Linfocítica T Aguda , Trombocitopenia/patología
10.
Blood ; 115(17): 3463-71, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20154211

RESUMEN

Precise spatiotemporal control of Gata1 expression is required in both early hematopoietic progenitors to determine erythroid/megakaryocyte versus granulocyte/monocyte lineage output and in the subsequent differentiation of erythroid cells and megakaryocytes. An enhancer element upstream of the mouse Gata1 IE (1st exon erythroid) promoter, mHS-3.5, can direct both erythroid and megakaryocytic expression. However, loss of this element ablates only megakaryocytes, implying that an additional element has erythroid specificity. Here, we identify a double DNaseI hypersensitive site, mHS-25/6, as having erythroid but not megakaryocytic activity in primary cells. It binds an activating transcription factor complex in erythroid cells where it also makes physical contact with the Gata1 promoter. Deletion of mHS-25/6 or mHS-3.5 in embryonic stem cells has only a modest effect on in vitro erythroid differentiation, whereas loss of both elements ablates both primitive and definitive erythropoiesis with an almost complete loss of Gata1 expression. Surprisingly, Gata2 expression was also concomitantly low, suggesting a more complex interaction between these 2 factors than currently envisaged. Thus, whereas mHS-3.5 alone is sufficient for megakaryocytic development, mHS-3.5 and mHS-25/6 collectively regulate erythroid Gata1 expression, demonstrating lineage-specific differences in Gata1 cis-element use important for development of these 2 cell types.


Asunto(s)
Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos/fisiología , Células Eritroides/metabolismo , Eritropoyesis/fisiología , Factor de Transcripción GATA1/biosíntesis , Regulación de la Expresión Génica/fisiología , Megacariocitos/metabolismo , Animales , Células Madre Embrionarias/citología , Células Eritroides/citología , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Megacariocitos/citología , Ratones , Regiones Promotoras Genéticas/fisiología , Eliminación de Secuencia
11.
Nat Cell Biol ; 23(1): 61-74, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33420489

RESUMEN

Extra-embryonic mesoderm (ExM)-composed of the earliest cells that traverse the primitive streak-gives rise to the endothelium as well as haematopoietic progenitors in the developing yolk sac. How a specific subset of ExM becomes committed to a haematopoietic fate remains unclear. Here we demonstrate using an embryonic stem cell model that transient expression of the T-box transcription factor Eomesodermin (Eomes) governs haemogenic competency of ExM. Eomes regulates the accessibility of enhancers that the transcription factor stem cell leukaemia (SCL) normally utilizes to specify primitive erythrocytes and is essential for the normal development of Runx1+ haemogenic endothelium. Single-cell RNA sequencing suggests that Eomes loss of function profoundly blocks the formation of blood progenitors but not specification of Flk-1+ haematoendothelial progenitors. Our findings place Eomes at the top of the transcriptional hierarchy regulating early blood formation and suggest that haemogenic competence is endowed earlier during embryonic development than was previously appreciated.


Asunto(s)
Células Madre Embrionarias/citología , Hemangioblastos/citología , Mesodermo/citología , Proteínas de Dominio T Box/fisiología , Saco Vitelino/citología , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Hemangioblastos/metabolismo , Masculino , Mesodermo/metabolismo , Ratones Noqueados , Embarazo , RNA-Seq , Análisis de la Célula Individual , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Saco Vitelino/metabolismo
12.
Blood ; 112(4): 1056-67, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18550854

RESUMEN

Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding-independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , ADN/metabolismo , Hematopoyesis , Proteínas Proto-Oncogénicas/fisiología , Anemia/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión/genética , Diferenciación Celular , Embrión de Mamíferos , Eritrocitos/citología , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda
13.
Blood ; 112(7): 2738-49, 2008 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-18625887

RESUMEN

The transcription factor GATA1 coordinates timely activation and repression of megakaryocyte gene expression. Loss of GATA1 function results in excessive megakaryocyte proliferation and disordered terminal platelet maturation, leading to thrombocytopenia and leukemia in patients. The mechanisms by which GATA1 does this are unclear. We have used in vivo biotinylated GATA1 to isolate megakaryocyte GATA1-partner proteins. Here, several independent approaches show that GATA1 interacts with several proteins in the megakaryocyte cell line L8057 and in primary megakaryocytes. They include FOG1, the NURD complex, the pentameric complex containing SCL/TAL-1, the zinc-finger regulators GFI1B and ZFP143, and the corepressor ETO2. Knockdown of ETO2 expression promotes megakaryocyte differentiation and enhances expression of select genes expressed in terminal megakaryocyte maturation, eg, platelet factor 4 (Pf4). ETO2-dependent direct repression of the Pf4 proximal promoter is mediated by GATA-binding sites and an E-Box motif. Consistent with this, endogenous ETO2, GATA1, and the SCL pentameric complex all specifically bind the promoter in vivo. Finally, as ETO2 expression is restricted to immature megakaryocytes, these data suggest that ETO2 directly represses inappropriate early expression of a subset of terminally expressed megakaryocyte genes by binding to GATA1 and SCL.


Asunto(s)
Diferenciación Celular , Factor de Transcripción GATA1/metabolismo , Megacariocitos/citología , Megacariocitos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Biotinilación , Línea Celular , Elementos E-Box/genética , Humanos , Inmunoprecipitación , Ratones , Datos de Secuencia Molecular , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Factor Plaquetario 4/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Transporte de Proteínas , Reproducibilidad de los Resultados , Estreptavidina/metabolismo , Activación Transcripcional/genética
14.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 11): 1466-9, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21045296

RESUMEN

LMO2 (LIM domain only 2), also known as rhombotin-2, is a transcriptional regulator that is essential for normal haematopoietic development. In malignant haematopoiesis, its ectopic expression in T cells is involved in the pathogenesis of leukaemia. LMO2 contains four zinc-finger domains and binds to the ubiquitous nuclear adaptor protein Ldb1 via the LIM-interaction domain (LID). Together, they act as scaffolding proteins and bridge important haematopoietic transcription factors such as SCL/Tal1, E2A and GATA-1. Solving the structure of the LMO2:Ldb1-LID complex would therefore be a first step towards understanding how haematopoietic specific protein complexes form and would also provide an attractive target for drug development in anticancer therapy, especially for T-cell leukaemia. Here, the expression, purification, crystallization and data collection of a fusion protein consisting of the two LIM domains of LMO2 linked to the LID domain of Ldb1 via a flexible linker is reported. The crystals belonged to space group C2, with unit-cell parameters a = 179.9, b = 51.5, c = 114.7 Å, ß = 90.1°, and contained five molecules in the asymmetric unit. Multiple-wavelength anomalous dispersion (MAD) data have been collected at the zinc X-ray absorption edge to a resolution of 2.8 Šand the data were used to solve the structure of the LMO2:Ldb1-LID complex. Refinement and analysis of the electron-density map is in progress.


Asunto(s)
Proteínas de Unión al ADN/química , Metaloproteínas/química , Factores de Transcripción/química , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Proteínas de Unión al ADN/aislamiento & purificación , Humanos , Proteínas con Dominio LIM , Metaloproteínas/aislamiento & purificación , Proteínas Proto-Oncogénicas , Factores de Transcripción/aislamiento & purificación
15.
R Soc Open Sci ; 7(1): 191048, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32218938

RESUMEN

Chromatin remodelling and transcription factors play important roles in lineage commitment and development through control of gene expression. Activation of selected lineage-specific genes and repression of alternative lineage-affiliated genes result in tightly regulated cell differentiation transcriptional programmes. However, the complex functional and physical interplay between transcription factors and chromatin-modifying enzymes remains elusive. Recent evidence has implicated histone demethylases in normal haematopoietic differentiation as well as in malignant haematopoiesis. Here, we report an interaction between H3K4 demethylase JARID1A and the haematopoietic-specific master transcription proteins SCL and GATA1 in red blood cells. Specifically, we observe a direct physical contact between GATA1 and the second PHD domain of JARID1A. This interaction has potential implications for normal and malignant haematopoiesis.

16.
Cancer Sci ; 100(4): 689-97, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19302286

RESUMEN

TEL/ETV6 located at chromosome 12p13 encodes a member of the E26 transformation-specific family of transcription factors. TEL is known to be rearranged in a variety of leukemias and solid tumors resulting in the formation of oncogenic chimeric protein. Tel is essential for maintaining hematopoietic stem cells in the bone marrow. To understand the role of TEL in erythropoiesis, we generated transgenic mice expressing human TEL under the control of Gata1 promoter that is activated during the course of the erythroid-lineage differentiation (GATA1-TEL transgenic mice). Although GATA1-TEL transgenic mice appeared healthy up to 18 months of age, the level of hemoglobin was higher in transgenic mice compared to non-transgenic littermates. In addition, CD71+/TER119+ and c-kit+/CD41+ populations proliferated with a higher frequency in transgenic mice when bone marrow cells were cultured in the presence of erythropoietin and thrombopoietin, respectively. In transgenic mice, enhanced expression of Alas-e and beta-major globin genes was observed in erythroid-committed cells. When embryonic stem cells expressing human TEL under the same Gata1 promoter were differentiated into hematopoietic cells, immature erythroid precursor increased better compared to controls as judged from the numbers of burst-forming unit of erythrocytes. Our findings suggest some roles of TEL in expanding erythroid precursors and accumulating hemoglobin.


Asunto(s)
Células Precursoras Eritroides/metabolismo , Eritropoyesis/genética , Hemoglobinas/biosíntesis , Leucemia/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Animales , Células Precursoras Eritroides/citología , Factor de Transcripción GATA1/genética , Humanos , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Proteína ETS de Variante de Translocación 6
17.
Nat Commun ; 10(1): 1083, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842454

RESUMEN

VEGFA signaling controls physiological and pathological angiogenesis and hematopoiesis. Although many context-dependent signaling pathways downstream of VEGFA have been uncovered, vegfa transcriptional regulation in vivo remains unclear. Here, we show that the ETS transcription factor, Etv6, positively regulates vegfa expression during Xenopus blood stem cell development through multiple transcriptional inputs. In agreement with its established repressive functions, Etv6 directly inhibits expression of the repressor foxo3, to prevent Foxo3 from binding to and repressing the vegfa promoter. Etv6 also directly activates expression of the activator klf4; reflecting a genome-wide paucity in ETS-binding motifs in Etv6 genomic targets, Klf4 then recruits Etv6 to the vegfa promoter to activate its expression. These two mechanisms (double negative gate and feed-forward loop) are classic features of gene regulatory networks specifying cell fates. Thus, Etv6's dual function, as a transcriptional repressor and activator, controls a major signaling pathway involved in endothelial and blood development in vivo.


Asunto(s)
Proteína Forkhead Box O3/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/fisiología , Animales , Embrión no Mamífero , Endotelio/embriología , Endotelio/metabolismo , Proteína Forkhead Box O3/antagonistas & inhibidores , Proteína Forkhead Box O3/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/genética , Morfolinos/genética , Oligonucleótidos Antisentido/genética , Proteínas Proto-Oncogénicas c-ets/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Transducción de Señal/fisiología , Somitos/embriología , Somitos/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/genética , Proteína ETS de Variante de Translocación 6
18.
Mol Cell Biol ; 25(19): 8592-606, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16166640

RESUMEN

The DNA-binding hemopoietic zinc finger transcription factor GATA1 promotes terminal megakaryocyte differentiation and restrains abnormal immature megakaryocyte expansion. How GATA1 coordinates these fundamental processes is unclear. Previous studies of synthetic and naturally occurring mutant GATA1 molecules demonstrate that DNA-binding and interaction with the essential GATA1 cofactor FOG-1 (via the N-terminal finger) are required for gene expression in terminally differentiating megakaryocytes and for platelet production. Moreover, acquired mutations deleting the N-terminal 84 amino acids are specifically detected in megakaryocytic leukemia in human Down syndrome patients. In this study, we have systematically dissected GATA1 domains required for platelet release and control of megakaryocyte growth by ectopically expressing modified GATA1 molecules in primary GATA1-deficient fetal megakaryocyte progenitors. In addition to DNA binding, distinct N-terminal regions, including residues in the first 84 amino acids, promote platelet release and restrict megakaryocyte growth. In contrast, abrogation of GATA1-FOG-1 interaction leads to loss of differentiation, but growth of blocked immature megakaryocytes is controlled. Thus, distinct GATA1 domains regulate terminal megakaryocyte gene expression leading to platelet release and restrain megakaryocyte growth, and these processes can be uncoupled.


Asunto(s)
Factor de Transcripción GATA1/fisiología , Megacariocitos/citología , Secuencia de Aminoácidos , Animales , Antígenos CD/biosíntesis , Plaquetas/metabolismo , Western Blotting , Diferenciación Celular , Línea Celular , Proliferación Celular , Separación Celular , Pollos , Clonación Molecular , ADN/química , Citometría de Flujo , Factor de Transcripción GATA1/química , Factor de Transcripción GATA1/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Megacariocitos/metabolismo , Glicoproteínas de Membrana/biosíntesis , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Fenotipo , Glicoproteína IIb de Membrana Plaquetaria/biosíntesis , Unión Proteica , Estructura Terciaria de Proteína , Retroviridae/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Células Madre/citología , Tetraspanina 29 , Dedos de Zinc
19.
Mol Cell Biol ; 25(23): 10235-50, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16287841

RESUMEN

Lineage specification and cellular maturation require coordinated regulation of gene expression programs. In large part, this is dependent on the activator and repressor functions of protein complexes associated with tissue-specific transcriptional regulators. In this study, we have used a proteomic approach to characterize multiprotein complexes containing the key hematopoietic regulator SCL in erythroid and megakaryocytic cell lines. One of the novel SCL-interacting proteins identified in both cell types is the transcriptional corepressor ETO-2. Interaction between endogenous proteins was confirmed in primary cells. We then showed that SCL complexes are shared but also significantly differ in the two cell types. Importantly, SCL/ETO-2 interacts with another corepressor, Gfi-1b, in red cells but not megakaryocytes. The SCL/ETO-2/Gfi-1b association is lost during erythroid differentiation of primary fetal liver cells. Genetic studies of erythroid cells show that ETO-2 exerts a repressor effect on SCL target genes. We suggest that, through its association with SCL, ETO-2 represses gene expression in the early stages of erythroid differentiation and that alleviation/modulation of the repressive state is then required for expression of genes necessary for terminal erythroid maturation to proceed.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Eritroides/metabolismo , Eritropoyesis , Megacariocitos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Células Cultivadas , Células Eritroides/citología , Regulación de la Expresión Génica , Ratones , Mutación/genética , Proteínas Nucleares/genética , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas Represoras/genética , Proteína 1 de la Leucemia Linfocítica T Aguda , Factores de Transcripción/genética , Transcripción Genética/genética
20.
Nat Commun ; 9(1): 5375, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30560907

RESUMEN

During development, it is unclear if lineage-fated cells derive from multilineage-primed progenitors and whether active mechanisms operate to restrict cell fate. Here we investigate how mesoderm specifies into blood-fated cells. We document temporally restricted co-expression of blood (Scl/Tal1), cardiac (Mesp1) and paraxial (Tbx6) lineage-affiliated transcription factors in single cells, at the onset of blood specification, supporting the existence of common progenitors. At the same time-restricted stage, absence of SCL results in expansion of cardiac/paraxial cell populations and increased cardiac/paraxial gene expression, suggesting active suppression of alternative fates. Indeed, SCL normally activates expression of co-repressor ETO2 and Polycomb-PRC1 subunits (RYBP, PCGF5) and maintains levels of Polycomb-associated histone marks (H2AK119ub/H3K27me3). Genome-wide analyses reveal ETO2 and RYBP co-occupy most SCL target genes, including cardiac/paraxial loci. Reduction of Eto2 or Rybp expression mimics Scl-null cardiac phenotype. Therefore, SCL-mediated transcriptional repression prevents mis-specification of blood-fated cells, establishing active repression as central to fate determination processes.


Asunto(s)
Linaje de la Célula/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Proteína 1 de la Leucemia Linfocítica T Aguda/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/fisiología , Línea Celular , Separación Celular/métodos , Embrión de Mamíferos , Citometría de Flujo/métodos , Código de Histonas/fisiología , Mesodermo/citología , Mesodermo/fisiología , Ratones , Células Madre Embrionarias de Ratones , Proteínas Nucleares/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/genética , Proteína 1 de la Leucemia Linfocítica T Aguda/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA