Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(8): 2167-2182.e22, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811809

RESUMEN

Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1ß, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.


Asunto(s)
COVID-19/complicaciones , Cardiotónicos/uso terapéutico , Proteínas de Ciclo Celular/antagonistas & inhibidores , Cardiopatías/tratamiento farmacológico , Quinazolinonas/uso terapéutico , Factores de Transcripción/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Citocinas/metabolismo , Femenino , Cardiopatías/etiología , Células Madre Embrionarias Humanas , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Tratamiento Farmacológico de COVID-19
2.
Am J Hum Genet ; 110(9): 1600-1605, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37607539

RESUMEN

Recent studies in non-human model systems have shown therapeutic potential of nucleoside-modified messenger RNA (modRNA) treatments for lysosomal storage diseases. Here, we assessed the efficacy of a modRNA treatment to restore the expression of the galactosidase alpha (GLA), which codes for α-Galactosidase A (α-GAL) enzyme, in a human cardiac model generated from induced pluripotent stem cells (iPSCs) derived from two individuals with Fabry disease. Consistent with the clinical phenotype, cardiomyocytes from iPSCs derived from Fabry-affected individuals showed accumulation of the glycosphingolipid Globotriaosylceramide (GB3), which is an α-galactosidase substrate. Furthermore, the Fabry cardiomyocytes displayed significant upregulation of lysosomal-associated proteins. Upon GLA modRNA treatment, a subset of lysosomal proteins were partially restored to wild-type levels, implying the rescue of the molecular phenotype associated with the Fabry genotype. Importantly, a significant reduction of GB3 levels was observed in GLA modRNA-treated cardiomyocytes, demonstrating that α-GAL enzymatic activity was restored. Together, our results validate the utility of iPSC-derived cardiomyocytes from affected individuals as a model to study disease processes in Fabry disease and the therapeutic potential of GLA modRNA treatment to reduce GB3 accumulation in the heart.


Asunto(s)
Enfermedad de Fabry , Células Madre Pluripotentes Inducidas , Humanos , Miocitos Cardíacos , ARN , Enfermedad de Fabry/genética , Enfermedad de Fabry/terapia , ARN Mensajero
3.
J Virol ; 98(3): e0180223, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38334329

RESUMEN

With a high incidence of acute kidney injury among hospitalized COVID-19 patients, considerable attention has been focussed on whether SARS-CoV-2 specifically targets kidney cells to directly impact renal function, or whether renal damage is primarily an indirect outcome. To date, several studies have utilized kidney organoids to understand the pathogenesis of COVID-19, revealing the ability for SARS-CoV-2 to predominantly infect cells of the proximal tubule (PT), with reduced infectivity following administration of soluble ACE2. However, the immaturity of standard human kidney organoids represents a significant hurdle, leaving the preferred SARS-CoV-2 processing pathway, existence of alternate viral receptors, and the effect of common hypertensive medications on the expression of ACE2 in the context of SARS-CoV-2 exposure incompletely understood. Utilizing a novel kidney organoid model with enhanced PT maturity, genetic- and drug-mediated inhibition of viral entry and processing factors confirmed the requirement for ACE2 for SARS-CoV-2 entry but showed that the virus can utilize dual viral spike protein processing pathways downstream of ACE2 receptor binding. These include TMPRSS- and CTSL/CTSB-mediated non-endosomal and endocytic pathways, with TMPRSS10 likely playing a more significant role in the non-endosomal pathway in renal cells than TMPRSS2. Finally, treatment with the antihypertensive ACE inhibitor, lisinopril, showed negligible impact on receptor expression or susceptibility of renal cells to infection. This study represents the first in-depth characterization of viral entry in stem cell-derived human kidney organoids with enhanced PTs, providing deeper insight into the renal implications of the ongoing COVID-19 pandemic. IMPORTANCE: Utilizing a human iPSC-derived kidney organoid model with improved proximal tubule (PT) maturity, we identified the mechanism of SARS-CoV-2 entry in renal cells, confirming ACE2 as the sole receptor and revealing redundancy in downstream cell surface TMPRSS- and endocytic Cathepsin-mediated pathways. In addition, these data address the implications of SARS-CoV-2 exposure in the setting of the commonly prescribed ACE-inhibitor, lisinopril, confirming its negligible impact on infection of kidney cells. Taken together, these results provide valuable insight into the mechanism of viral infection in the human kidney.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Riñón , Organoides , SARS-CoV-2 , Internalización del Virus , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/complicaciones , COVID-19/virología , Riñón/citología , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/virología , Lisinopril/farmacología , Lisinopril/metabolismo , Organoides/citología , Organoides/efectos de los fármacos , Organoides/metabolismo , Organoides/virología , Pandemias , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus/efectos de los fármacos , Peptidil-Dipeptidasa A/metabolismo , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Lesión Renal Aguda/etiología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/virología , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/virología , Receptores de Coronavirus/metabolismo , Modelos Biológicos , Serina Endopeptidasas/metabolismo , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Endosomas/virología , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre/citología
4.
EMBO Rep ; 24(10): e55043, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37551717

RESUMEN

The cardiac endothelium influences ventricular chamber development by coordinating trabeculation and compaction. However, the endothelial-specific molecular mechanisms mediating this coordination are not fully understood. Here, we identify the Sox7 transcription factor as a critical cue instructing cardiac endothelium identity during ventricular chamber development. Endothelial-specific loss of Sox7 function in mice results in cardiac ventricular defects similar to non-compaction cardiomyopathy, with a change in the proportions of trabecular and compact cardiomyocytes in the mutant hearts. This phenotype is paralleled by abnormal coronary artery formation. Loss of Sox7 function disrupts the transcriptional regulation of the Notch pathway and connexins 37 and 40, which govern coronary arterial specification. Upon Sox7 endothelial-specific deletion, single-nuclei transcriptomics analysis identifies the depletion of a subset of Sox9/Gpc3-positive endocardial progenitor cells and an increase in erythro-myeloid cell lineages. Fate mapping analysis reveals that a subset of Sox7-null endothelial cells transdifferentiate into hematopoietic but not cardiomyocyte lineages. Our findings determine that Sox7 maintains cardiac endothelial cell identity, which is crucial to the cellular cross-talk that drives ventricular compaction and coronary artery development.


Asunto(s)
Vasos Coronarios , Células Endoteliales , Animales , Ratones , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Miocitos Cardíacos/metabolismo , Regulación de la Expresión Génica , Endotelio/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo
5.
J Proteome Res ; 23(4): 1285-1297, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38480473

RESUMEN

C18ORF25 was recently shown to be phosphorylated at S67 by AMP-activated protein kinase (AMPK) in the skeletal muscle, following acute exercise in humans. Phosphorylation was shown to improve the ex vivo skeletal muscle contractile function in mice, but our understanding of the molecular mechanisms is incomplete. Here, we profiled the interactome of C18ORF25 in mouse myotubes using affinity purification coupled to mass spectrometry. This analysis included an investigation of AMPK-dependent and S67-dependent protein/protein interactions. Several nucleocytoplasmic and contractile-associated proteins were identified, which revealed a subset of GTPases that associate with C18ORF25 in an AMPK- and S67 phosphorylation-dependent manner. We confirmed that C18ORF25 is localized to the nucleus and the contractile apparatus in the skeletal muscle. Mice lacking C18Orf25 display defects in calcium handling specifically in fast-twitch muscle fibers. To investigate these mechanisms, we developed an integrated single fiber physiology and single fiber proteomic platform. The approach enabled a detailed assessment of various steps in the excitation-contraction pathway including SR calcium handling and force generation, followed by paired single fiber proteomic analysis. This enabled us to identify >700 protein/phenotype associations and 36 fiber-type specific differences, following loss of C18Orf25. Taken together, our data provide unique insights into the function of C18ORF25 and its role in skeletal muscle physiology.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Fibras Musculares de Contracción Lenta , Ratones , Humanos , Animales , Fibras Musculares de Contracción Lenta/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteómica/métodos , Calcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Músculo Esquelético/metabolismo , Contracción Muscular , Espectrometría de Masas
6.
Development ; 147(22)2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33144401

RESUMEN

The inability of the adult mammalian heart to regenerate represents a fundamental barrier in heart failure management. By contrast, the neonatal heart retains a transient regenerative capacity, but the underlying mechanisms for the developmental loss of cardiac regenerative capacity in mammals are not fully understood. Wnt/ß-catenin signalling has been proposed as a key cardioregenerative pathway driving cardiomyocyte proliferation. Here, we show that Wnt/ß-catenin signalling potentiates neonatal mouse cardiomyocyte proliferation in vivo and immature human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) proliferation in vitro By contrast, Wnt/ß-catenin signalling in adult mice is cardioprotective but fails to induce cardiomyocyte proliferation. Transcriptional profiling and chromatin immunoprecipitation sequencing of neonatal mouse and hPSC-CMs revealed a core Wnt/ß-catenin-dependent transcriptional network governing cardiomyocyte proliferation. By contrast, ß-catenin failed to re-engage this neonatal proliferative gene network in the adult heart despite partial transcriptional re-activation of a neonatal glycolytic gene programme. These findings suggest that ß-catenin might be repurposed from regenerative to protective functions in the adult heart in a developmental process dependent on the metabolic status of cardiomyocytes.


Asunto(s)
Proliferación Celular , Redes Reguladoras de Genes , Miocitos Cardíacos/metabolismo , Transcripción Genética , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Miocitos Cardíacos/citología , beta Catenina/genética
7.
Bioinformatics ; 38(20): 4720-4726, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36005887

RESUMEN

MOTIVATION: Single cell RNA-Sequencing (scRNA-seq) has rapidly gained popularity over the last few years for profiling the transcriptomes of thousands to millions of single cells. This technology is now being used to analyse experiments with complex designs including biological replication. One question that can be asked from single cell experiments, which has been difficult to directly address with bulk RNA-seq data, is whether the cell type proportions are different between two or more experimental conditions. As well as gene expression changes, the relative depletion or enrichment of a particular cell type can be the functional consequence of disease or treatment. However, cell type proportion estimates from scRNA-seq data are variable and statistical methods that can correctly account for different sources of variability are needed to confidently identify statistically significant shifts in cell type composition between experimental conditions. RESULTS: We have developed propeller, a robust and flexible method that leverages biological replication to find statistically significant differences in cell type proportions between groups. Using simulated cell type proportions data, we show that propeller performs well under a variety of scenarios. We applied propeller to test for significant changes in cell type proportions related to human heart development, ageing and COVID-19 disease severity. AVAILABILITY AND IMPLEMENTATION: The propeller method is publicly available in the open source speckle R package (https://github.com/phipsonlab/speckle). All the analysis code for the article is available at the associated analysis website: https://phipsonlab.github.io/propeller-paper-analysis/. The speckle package, analysis scripts and datasets have been deposited at https://doi.org/10.5281/zenodo.7009042. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
COVID-19 , Análisis de la Célula Individual , Perfilación de la Expresión Génica , Humanos , ARN , Análisis de Secuencia de ARN , Programas Informáticos
8.
J Mol Cell Cardiol ; 163: 20-32, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34624332

RESUMEN

Understanding the spatial gene expression and regulation in the heart is key to uncovering its developmental and physiological processes, during homeostasis and disease. Numerous techniques exist to gain gene expression and regulation information in organs such as the heart, but few utilize intuitive true-to-life three-dimensional representations to analyze and visualise results. Here we combined transcriptomics with 3D-modelling to interrogate spatial gene expression in the mammalian heart. For this, we microdissected and sequenced transcriptome-wide 18 anatomical sections of the adult mouse heart. Our study has unveiled known and novel genes that display complex spatial expression in the heart sub-compartments. We have also created 3D-cardiomics, an interface for spatial transcriptome analysis and visualization that allows the easy exploration of these data in a 3D model of the heart. 3D-cardiomics is accessible from http://3d-cardiomics.erc.monash.edu/.


Asunto(s)
Corazón , Transcriptoma , Animales , Perfilación de la Expresión Génica/métodos , Mamíferos , Ratones
9.
Circulation ; 144(12): 947-960, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34264749

RESUMEN

BACKGROUND: Ischemia-reperfusion injury (IRI) is one of the major risk factors implicated in morbidity and mortality associated with cardiovascular disease. During cardiac ischemia, the buildup of acidic metabolites results in decreased intracellular and extracellular pH, which can reach as low as 6.0 to 6.5. The resulting tissue acidosis exacerbates ischemic injury and significantly affects cardiac function. METHODS: We used genetic and pharmacologic methods to investigate the role of acid-sensing ion channel 1a (ASIC1a) in cardiac IRI at the cellular and whole-organ level. Human induced pluripotent stem cell-derived cardiomyocytes as well as ex vivo and in vivo models of IRI were used to test the efficacy of ASIC1a inhibitors as pre- and postconditioning therapeutic agents. RESULTS: Analysis of human complex trait genetics indicates that variants in the ASIC1 genetic locus are significantly associated with cardiac and cerebrovascular ischemic injuries. Using human induced pluripotent stem cell-derived cardiomyocytes in vitro and murine ex vivo heart models, we demonstrate that genetic ablation of ASIC1a improves cardiomyocyte viability after acute IRI. Therapeutic blockade of ASIC1a using specific and potent pharmacologic inhibitors recapitulates this cardioprotective effect. We used an in vivo model of myocardial infarction and 2 models of ex vivo donor heart procurement and storage as clinical models to show that ASIC1a inhibition improves post-IRI cardiac viability. Use of ASIC1a inhibitors as preconditioning or postconditioning agents provided equivalent cardioprotection to benchmark drugs, including the sodium-hydrogen exchange inhibitor zoniporide. At the cellular and whole organ level, we show that acute exposure to ASIC1a inhibitors has no effect on cardiac ion channels regulating baseline electromechanical coupling and physiologic performance. CONCLUSIONS: Our data provide compelling evidence for a novel pharmacologic strategy involving ASIC1a blockade as a cardioprotective therapy to improve the viability of hearts subjected to IRI.


Asunto(s)
Canales Iónicos Sensibles al Ácido/biosíntesis , Canales Iónicos Sensibles al Ácido/genética , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Animales , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Preparación de Corazón Aislado/métodos , Masculino , Ratones , Ratones Noqueados , Isquemia Miocárdica/terapia , Daño por Reperfusión Miocárdica/terapia , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Polimorfismo de Nucleótido Simple/fisiología , Recuperación de la Función/efectos de los fármacos , Recuperación de la Función/fisiología , Venenos de Araña/farmacología
10.
Circulation ; 143(16): 1614-1628, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33682422

RESUMEN

BACKGROUND: Despite in-depth knowledge of the molecular mechanisms controlling embryonic heart development, little is known about the signals governing postnatal maturation of the human heart. METHODS: Single-nucleus RNA sequencing of 54 140 nuclei from 9 human donors was used to profile transcriptional changes in diverse cardiac cell types during maturation from fetal stages to adulthood. Bulk RNA sequencing and the Assay for Transposase-Accessible Chromatin using sequencing were used to further validate transcriptional changes and to profile alterations in the chromatin accessibility landscape in purified cardiomyocyte nuclei from 21 human donors. Functional validation studies of sex steroids implicated in cardiac maturation were performed in human pluripotent stem cell-derived cardiac organoids and mice. RESULTS: Our data identify the progesterone receptor as a key mediator of sex-dependent transcriptional programs during cardiomyocyte maturation. Functional validation studies in human cardiac organoids and mice demonstrate that the progesterone receptor drives sex-specific metabolic programs and maturation of cardiac contractile properties. CONCLUSIONS: These data provide a blueprint for understanding human heart maturation in both sexes and reveal an important role for the progesterone receptor in human heart development.


Asunto(s)
Corazón/fisiopatología , Receptores de Progesterona/metabolismo , Femenino , Humanos , Masculino , Factores Sexuales
11.
PLoS Pathog ; 16(7): e1008651, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32658914

RESUMEN

Type-2 immunity elicits tissue repair and homeostasis, however dysregulated type-2 responses cause aberrant tissue remodelling, as observed in asthma. Severe respiratory viral infections in infancy predispose to later asthma, however, the processes that mediate tissue damage-induced type-2 inflammation and the origins of airway remodelling remain ill-defined. Here, using a preclinical mouse model of viral bronchiolitis, we find that increased epithelial and mesenchymal high-mobility group box 1 (HMGB1) expression is associated with increased numbers of IL-13-producing type-2 innate lymphoid cell (ILC2s) and the expansion of the airway smooth muscle (ASM) layer. Anti-HMGB1 ablated lung ILC2 numbers and ASM growth in vivo, and inhibited ILC2-mediated ASM cell proliferation in a co-culture model. Furthermore, we identified that HMGB1/RAGE (receptor for advanced glycation endproducts) signalling mediates an ILC2-intrinsic IL-13 auto-amplification loop. In summary, therapeutic targeting of the HMGB1/RAGE signalling axis may act as a novel asthma preventative by dampening ILC2-mediated type-2 inflammation and associated ASM remodelling.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/inmunología , Proteína HMGB1/inmunología , Inflamación/inmunología , Linfocitos/inmunología , Músculo Liso/inmunología , Animales , Ratones , Músculo Liso/patología , Receptor para Productos Finales de Glicación Avanzada/inmunología
12.
Eur Heart J ; 42(32): 3063-3073, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34263907

RESUMEN

AIMS: The aim of this study was to determine the frequency of heterozygous truncating ALPK3 variants (ALPK3tv) in patients with hypertrophic cardiomyopathy (HCM) and confirm their pathogenicity using burden testing in independent cohorts and family co-segregation studies. METHODS AND RESULTS: In a discovery cohort of 770 index patients with HCM, 12 (1.56%) were heterozygous for ALPK3tv [odds ratio(OR) 16.11, 95% confidence interval (CI) 7.94-30.02, P = 8.05e-11] compared to the Genome Aggregation Database (gnomAD) population. In a validation cohort of 2047 HCM probands, 32 (1.56%) carried heterozygous ALPK3tv (OR 16.17, 95% CI 10.31-24.87, P < 2.2e-16, compared to gnomAD). Combined logarithm of odds score in seven families with ALPK3tv was 2.99. In comparison with a cohort of genotyped patients with HCM (n = 1679) with and without pathogenic sarcomere gene variants (SP+ and SP-), ALPK3tv carriers had a higher prevalence of apical/concentric patterns of hypertrophy (60%, P < 0.001) and of a short PR interval (10%, P = 0.009). Age at diagnosis and maximum left ventricular wall thickness were similar to SP- and left ventricular systolic impairment (6%) and non-sustained ventricular tachycardia (31%) at baseline similar to SP+. After 5.3 ± 5.7 years, 4 (9%) patients with ALPK3tv died of heart failure or had cardiac transplantation (log-rank P = 0.012 vs. SP- and P = 0.425 vs. SP+). Imaging and histopathology showed extensive myocardial fibrosis and myocyte vacuolation. CONCLUSIONS: Heterozygous ALPK3tv are pathogenic and segregate with a characteristic HCM phenotype.


Asunto(s)
Cardiomiopatía Hipertrófica , Proteínas Musculares/genética , Proteínas Quinasas/genética , Cardiomiopatía Hipertrófica/genética , Heterocigoto , Humanos , Mutación , Sarcómeros
13.
J Cell Physiol ; 236(12): 8160-8170, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34170016

RESUMEN

Epidermal growth factor (EGF) receptors (ErbB1-ErbB4) promote cardiac development and growth, although the specific EGF ligands and receptor isoforms involved in growth/repair versus pathology remain undefined. We challenged ventricular cardiomyocytes with EGF-like ligands and observed that selective activation of ErbB4 (the receptor for neuregulin 1 [NRG1]), but not ErbB1 (the receptor for EGF, EGFR), stimulated hypertrophy. This lack of direct ErbB1-mediated hypertrophy occurred despite robust activation of extracellular-regulated kinase 1/2 (ERK) and protein kinase B. Hypertrophic responses to NRG1 were unaffected by the tyrosine kinase inhibitor (AG1478) at concentrations that are selective for ErbB1 over ErbB4. NRG1-induced cardiomyocyte enlargement was suppressed by small interfering RNA (siRNA) knockdown of ErbB4 and ErbB2, whereas ERK phosphorylation was only suppressed by ErbB4 siRNA. Four ErbB4 isoforms exist (JM-a/JM-b and CYT-1/CYT-2), generated by alternative splicing, and their expression declines postnatally and following cardiac hypertrophy. Silencing of all four isoforms in cardiomyocytes, using an ErbB4 siRNA, abrogated NRG1-induced hypertrophic promoter/reporter activity, which was rescued by coexpression of knockdown-resistant versions of the ErbB4 isoforms. Thus, ErbB4 confers cardiomyocyte hypertrophy to NRG1, and all four ErbB4 isoforms possess the capacity to mediate this effect.


Asunto(s)
Hipertrofia/metabolismo , Miocitos Cardíacos/metabolismo , Isoformas de Proteínas/metabolismo , Receptor ErbB-4/metabolismo , Empalme Alternativo/genética , Animales , Proliferación Celular/fisiología , Humanos , Fosforilación/fisiología , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo , Receptor ErbB-4/genética , Transducción de Señal/fisiología
14.
Circulation ; 141(13): 1080-1094, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31941367

RESUMEN

BACKGROUND: Myocardial infarction (MI) triggers myelopoiesis, resulting in heightened production of neutrophils. However, the mechanisms that sustain their production and recruitment to the injured heart are unclear. METHODS: Using a mouse model of the permanent ligation of the left anterior descending artery and flow cytometry, we first characterized the temporal and spatial effects of MI on different myeloid cell types. We next performed global transcriptome analysis of different cardiac cell types within the infarct to identify the drivers of the acute inflammatory response and the underlying signaling pathways. Using a combination of genetic and pharmacological strategies, we identified the sequelae of events that led to MI-induced myelopoiesis. Cardiac function was assessed by echocardiography. The association of early indexes of neutrophilia with major adverse cardiovascular events was studied in a cohort of patients with acute MI. RESULTS: Induction of MI results in rapid recruitment of neutrophils to the infarct, where they release specific alarmins, S100A8 and S100A9. These alarmins bind to the Toll-like receptor 4 and prime the nod-like receptor family pyrin domain-containing 3 inflammasome in naïve neutrophils and promote interleukin-1ß secretion. The released interleukin-1ß interacts with its receptor (interleukin 1 receptor type 1) on hematopoietic stem and progenitor cells in the bone marrow and stimulates granulopoiesis in a cell-autonomous manner. Genetic or pharmacological strategies aimed at disruption of S100A8/A9 and their downstream signaling cascade suppress MI-induced granulopoiesis and improve cardiac function. Furthermore, in patients with acute coronary syndrome, higher neutrophil count on admission and after revascularization correlates positively with major adverse cardiovascular disease outcomes. CONCLUSIONS: Our study provides novel evidence for the primary role of neutrophil-derived alarmins (S100A8/A9) in dictating the nature of the ensuing inflammatory response after myocardial injury. Therapeutic strategies aimed at disruption of S100A8/A9 signaling or their downstream mediators (eg, nod-like receptor family pyrin domain-containing 3 inflammasome, interleukin-1ß) in neutrophils suppress granulopoiesis and may improve cardiac function in patients with acute coronary syndrome.


Asunto(s)
Calgranulina A/metabolismo , Granulocitos/metabolismo , Infarto del Miocardio/sangre , Neutrófilos/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones
15.
Development ; 145(11)2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884655

RESUMEN

The inaugural 'Symposium for the Next Generation of Stem Cell Research' (SY-Stem) was held on February 22-24 at the Vienna BioCenter in Austria. The meeting focused on having young researchers as speakers, and the program was of an impressively high quality. Here, we summarise key findings from this meeting, which brought together emerging leaders to discuss various topics, including pluripotency, organoids, endogenous regeneration, transcriptional regulation, clinical applications and emerging technologies.


Asunto(s)
Células Madre Embrionarias/fisiología , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular/fisiología , Humanos , Regeneración/fisiología , Ingeniería de Tejidos/métodos
16.
Physiol Genomics ; 52(3): 143-159, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31961761

RESUMEN

There are critical molecular mechanisms that can be activated to induce myocardial repair, and in humans this is most efficient during fetal development. The timing of heart development in relation to birth and the size/electrophysiology of the heart are similar in humans and sheep, providing a model to investigate the repair capacity of the mammalian heart and how this can be applied to adult heart repair. Myocardial infarction was induced by ligation of the left anterior descending coronary artery in fetal (105 days gestation when cardiomyocytes are proliferative) and adolescent sheep (6 mo of age when all cardiomyocytes have switched to an adult phenotype). An ovine gene microarray was used to compare gene expression in sham and infarcted (remote, border and infarct areas) cardiac tissue from fetal and adolescent hearts. The gene response to myocardial infarction was less pronounced in fetal compared with adolescent sheep hearts and there were unique gene responses at each age. There were also region-specific changes in gene expression between each age, in the infarct tissue, tissue bordering the infarct, and tissue remote from the infarction. In total, there were 880 genes that responded to MI uniquely in the adolescent samples compared with 170 genes in the fetal response, as well as 742 overlap genes that showed concordant direction of change responses to infarction at both ages. In response to myocardial infarction, there were specific changes in genes within pathways of mitochondrial oxidation, muscle contraction, and hematopoietic cell lineages, suggesting that the control of energy utilization and immune function are critical for effective heart repair. The more restricted gene response in the fetus may be an important factor in its enhanced capacity for cardiac repair.


Asunto(s)
Corazón Fetal/fisiopatología , Infarto del Miocardio/genética , Regeneración/genética , Transcriptoma , Factores de Edad , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Femenino , Perfilación de la Expresión Génica , Masculino , Embarazo , Reacción en Cadena en Tiempo Real de la Polimerasa , Ovinos , Análisis de Matrices Tisulares/métodos , Regulación hacia Arriba/genética
17.
Development ; 144(6): 1118-1127, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28174241

RESUMEN

The adult human heart possesses a limited regenerative potential following an ischemic event, and undergoes a number of pathological changes in response to injury. Although cardiac regeneration has been documented in zebrafish and neonatal mouse hearts, it is currently unknown whether the immature human heart is capable of undergoing complete regeneration. Combined progress in pluripotent stem cell differentiation and tissue engineering has facilitated the development of human cardiac organoids (hCOs), which resemble fetal heart tissue and can be used to address this important knowledge gap. This study aimed to characterize the regenerative capacity of immature human heart tissue in response to injury. Following cryoinjury with a dry ice probe, hCOs exhibited an endogenous regenerative response with full functional recovery 2 weeks after acute injury. Cardiac functional recovery occurred in the absence of pathological fibrosis or cardiomyocyte hypertrophy. Consistent with regenerative organisms and neonatal human hearts, there was a high basal level of cardiomyocyte proliferation, which may be responsible for the regenerative capacity of the hCOs. This study suggests that immature human heart tissue has an intrinsic capacity to regenerate.


Asunto(s)
Lesiones Cardíacas/fisiopatología , Corazón/embriología , Corazón/fisiopatología , Modelos Biológicos , Organoides/embriología , Regeneración , Adulto , Muerte Celular , Diferenciación Celular , Línea Celular , Proliferación Celular , Congelación , Pruebas de Función Cardíaca , Lesiones Cardíacas/patología , Humanos , Hipertrofia , Contracción Miocárdica , Miocardio/patología , Miocitos Cardíacos/citología , Organoides/ultraestructura , Recuperación de la Función
18.
Proc Natl Acad Sci U S A ; 114(40): E8372-E8381, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28916735

RESUMEN

The mammalian heart undergoes maturation during postnatal life to meet the increased functional requirements of an adult. However, the key drivers of this process remain poorly defined. We are currently unable to recapitulate postnatal maturation in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), limiting their potential as a model system to discover regenerative therapeutics. Here, we provide a summary of our studies, where we developed a 96-well device for functional screening in human pluripotent stem cell-derived cardiac organoids (hCOs). Through interrogation of >10,000 organoids, we systematically optimize parameters, including extracellular matrix (ECM), metabolic substrate, and growth factor conditions, that enhance cardiac tissue viability, function, and maturation. Under optimized maturation conditions, functional and molecular characterization revealed that a switch to fatty acid metabolism was a central driver of cardiac maturation. Under these conditions, hPSC-CMs were refractory to mitogenic stimuli, and we found that key proliferation pathways including ß-catenin and Yes-associated protein 1 (YAP1) were repressed. This proliferative barrier imposed by fatty acid metabolism in hCOs could be rescued by simultaneous activation of both ß-catenin and YAP1 using genetic approaches or a small molecule activating both pathways. These studies highlight that human organoids coupled with higher-throughput screening platforms have the potential to rapidly expand our knowledge of human biology and potentially unlock therapeutic strategies.


Asunto(s)
Factores Biológicos/metabolismo , Puntos de Control del Ciclo Celular , Miocitos Cardíacos/metabolismo , Organoides/metabolismo , Células Madre Pluripotentes/metabolismo , Regeneración/fisiología , Adulto , Animales , Diferenciación Celular , Daño del ADN , Humanos , Masculino , Miocitos Cardíacos/citología , Organoides/citología , Células Madre Pluripotentes/citología , Ratas Sprague-Dawley
19.
Am J Physiol Cell Physiol ; 317(6): C1256-C1267, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31577512

RESUMEN

Cardiac arrhythmias of both atrial and ventricular origin are an important feature of cardiovascular disease. Novel antiarrhythmic therapies are required to overcome current drug limitations related to effectiveness and pro-arrhythmia risk in some contexts. Cardiomyocyte culture models provide a high-throughput platform for screening antiarrhythmic compounds, but comparative information about electrophysiological properties of commonly used types of cardiomyocyte preparations is lacking. Standardization of cultured cardiomyocyte microelectrode array (MEA) experimentation is required for its application as a high-throughput platform for antiarrhythmic drug development. The aim of this study was to directly compare the electrophysiological properties and responses to isoproterenol of three commonly used cardiac cultures. Neonatal rat ventricular myocytes (NRVMs), immortalized atrial HL-1 cells, and custom-generated human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were cultured on microelectrode arrays for 48-120 h. Extracellular field potentials were recorded, and conduction velocity was mapped in the presence/absence of the ß-adrenoceptor agonist isoproterenol (1 µM). Field potential amplitude and conduction velocity were greatest in NRVMs and did not differ in cardiomyocytes isolated from male/female hearts. Both NRVMs and hiPSC-CMs exhibited longer field potential durations with rate dependence and were responsive to isoproterenol. In contrast, HL-1 cells exhibited slower conduction and shorter field potential durations and did not respond to 1 µM isoproterenol. This is the first study to compare the intrinsic electrophysiologic properties of cultured cardiomyocyte preparations commonly used for in vitro electrophysiology assessment. These findings offer important comparative data to inform methodological approaches in the use of MEA and other techniques relating to cardiomyocyte functional screening investigations of particular relevance to arrhythmogenesis.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Agonistas Adrenérgicos beta/farmacología , Ensayos Analíticos de Alto Rendimiento/instrumentación , Isoproterenol/farmacología , Miocitos Cardíacos/efectos de los fármacos , Análisis de Matrices Tisulares/métodos , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular Transformada , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Ratones , Microelectrodos , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Especificidad de Órganos , Ratas
20.
Nature ; 497(7448): 249-253, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23594737

RESUMEN

The neonatal mammalian heart is capable of substantial regeneration following injury through cardiomyocyte proliferation. However, this regenerative capacity is lost by postnatal day 7 and the mechanisms of cardiomyocyte cell cycle arrest remain unclear. The homeodomain transcription factor Meis1 is required for normal cardiac development but its role in cardiomyocytes is unknown. Here we identify Meis1 as a critical regulator of the cardiomyocyte cell cycle. Meis1 deletion in mouse cardiomyocytes was sufficient for extension of the postnatal proliferative window of cardiomyocytes, and for re-activation of cardiomyocyte mitosis in the adult heart with no deleterious effect on cardiac function. In contrast, overexpression of Meis1 in cardiomyocytes decreased neonatal myocyte proliferation and inhibited neonatal heart regeneration. Finally, we show that Meis1 is required for transcriptional activation of the synergistic CDK inhibitors p15, p16 and p21. These results identify Meis1 as a critical transcriptional regulator of cardiomyocyte proliferation and a potential therapeutic target for heart regeneration.


Asunto(s)
Puntos de Control del Ciclo Celular , Proteínas de Homeodominio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas de Neoplasias/metabolismo , Alelos , Animales , Animales Recién Nacidos , Proliferación Celular , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Femenino , Corazón/anatomía & histología , Corazón/fisiología , Proteínas de Homeodominio/genética , Masculino , Ratones , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Proteínas de Neoplasias/deficiencia , Proteínas de Neoplasias/genética , Regeneración , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA