Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(16): e2120737119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412893

RESUMEN

Probability models are used for many statistical tasks, notably parameter estimation, interval estimation, inference about model parameters, point prediction, and interval prediction. Thus, choosing a statistical model and accounting for uncertainty about this choice are important parts of the scientific process. Here we focus on one such choice, that of variables to include in a linear regression model. Many methods have been proposed, including Bayesian and penalized likelihood methods, and it is unclear which one to use. We compared 21 of the most popular methods by carrying out an extensive set of simulation studies based closely on real datasets that span a range of situations encountered in practical data analysis. Three adaptive Bayesian model averaging (BMA) methods performed best across all statistical tasks. These used adaptive versions of Zellner's g-prior for the parameters, where the prior variance parameter g is a function of sample size or is estimated from the data. We found that for BMA methods implemented with Markov chain Monte Carlo, 10,000 iterations were enough. Computationally, we found two of the three best methods (BMA with g=√n and empirical Bayes-local) to be competitive with the least absolute shrinkage and selection operator (LASSO), which is often preferred as a variable selection technique because of its computational efficiency. BMA performed better than Bayesian model selection (in which just one model is selected).

2.
Stat Med ; 43(5): 983-1002, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38146838

RESUMEN

With the growing commonality of multi-omics datasets, there is now increasing evidence that integrated omics profiles lead to more efficient discovery of clinically actionable biomarkers that enable better disease outcome prediction and patient stratification. Several methods exist to perform host phenotype prediction from cross-sectional, single-omics data modalities but decentralized frameworks that jointly analyze multiple time-dependent omics data to highlight the integrative and dynamic impact of repeatedly measured biomarkers are currently limited. In this article, we propose a novel Bayesian ensemble method to consolidate prediction by combining information across several longitudinal and cross-sectional omics data layers. Unlike existing frequentist paradigms, our approach enables uncertainty quantification in prediction as well as interval estimation for a variety of quantities of interest based on posterior summaries. We apply our method to four published multi-omics datasets and demonstrate that it recapitulates known biology in addition to providing novel insights while also outperforming existing methods in estimation, prediction, and uncertainty quantification. Our open-source software is publicly available at https://github.com/himelmallick/IntegratedLearner.


Asunto(s)
Multiómica , Programas Informáticos , Humanos , Teorema de Bayes , Estudios Transversales , Biomarcadores
3.
DIS (Des Interact Syst Conf) ; 2022: 1831-1848, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35969716

RESUMEN

Studies find that older adults want control over how technologies are used in their care, but how it can be operationalized through design remains to be clarified. We present findings from a large survey (n=825) of a well-characterized U.S. online cohort that provides actionable evidence of the importance of designing for control over monitoring technologies. This uniquely large, age-diverse sample allows us to compare needs across age and other characteristics with insights about future users and current older adults (n=496 >64), including those concerned about their own memory loss (n=201). All five control options, which are not currently enabled, were very or extremely important to most people across age. Findings indicate that comfort with a range of care technologies is contingent on having privacy- and other control-enabling options. We discuss opportunities for design to meet these user needs that demand course correction through attentive, creative work.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA