Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 291(2031): 20240625, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39317320

RESUMEN

Disturbances catalyse change in forest ecosystems, and a climate-driven increase in disturbance activity could accelerate forest reorganization. Here, we studied post-disturbance forests after the biggest pulse of tree mortality in Central Europe in at least 170 years, caused by drought and bark beetle (Scolytinae) outbreaks in 2018-2020. Our objectives were to characterize the early state of tree regeneration after mortality, quantify patterns of reorganization relative to undisturbed reference conditions and assess how management and patch size affect forest reorganization after disturbance. We surveyed 1244 plots in 120 patches under managed (salvage-logged, often planted) and unmanaged (deadwood remaining on site, no planting) conditions in Germany. We found that regeneration density on disturbed sites was high (median 11 897 stems ha-1), resulting from a cohort of advance regeneration. Disturbances were strong drivers of change, with indications for resilience on only 36.3% of patches. Reassembly (i.e. a change in species composition) was the dominant pattern of reorganization (61.5%), and Picea abies forests changed most strongly. Post-disturbance management facilitated forest change, particularly promoting a change in species composition. The strength of reorganization increased with patch size. We conclude that the recent wave of tree mortality will likely accelerate forest change in Central Europe.


Asunto(s)
Bosques , Árboles , Alemania , Animales , Escarabajos/fisiología , Sequías , Conservación de los Recursos Naturales , Ecosistema , Europa (Continente) , Agricultura Forestal
2.
Ecol Evol ; 13(10): e10588, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37869428

RESUMEN

Functional trait approaches are common in ecology, but a lack of clear hypotheses on how traits relate to environmental gradients (i.e., trait-niche relationships) often makes uncovering mechanisms difficult. Furthermore, measures of community functional structure differ in their implications, yet inferences are seldom compared among metrics. Community-weighted mean trait values (CWMs), a common measure, are largely driven by the most common species and thus do not reflect community-wide trait-niche relationships per se. Alternatively, trait-niche relationships can be estimated across a larger group of species using hierarchical joint species distribution models (JSDMs), quantified by a parameter Γ. We investigated how inferences about trait-niche relationships are affected by the choice of metric. Using deadwood-dependent (saproxylic) beetles in fragmented Finnish forests, we followed a protocol for investigating trait-niche relationships by (1) identifying environmental filters (climate, forest age, and deadwood volume), (2) relating these to an ecological function (dispersal ability), and (3) identifying traits related to this function (wing morphology). We tested 18 hypothesized dispersal relationships using both CWM and Γ estimates across these environmental gradients. CWMs were more likely than Γ to show support for trait-niche relationships. Up to 13% of species' realized niches were explained by dispersal traits, but the directions of effects were consistent with fewer than 11%-39% of our 18 trait-niche hypotheses (depending on the metric used). This highlights the difficulty in connecting morphological traits and ecological functions in insects, despite the clear conceptual link between landscape connectivity and flight-related traits. Caution is thus warranted in hypothesis development, particularly where apparent trait-function links are less clear. Inferences differ when CWMs versus Γ estimates are used, necessitating the choice of a metric that reflects study questions. CWMs help explain the effects of environmental gradients on community trait composition, whereas the effects of traits on species' niches are better estimated using hierarchical JSDMs.

3.
Funct Ecol ; 37(1): 150-161, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37064507

RESUMEN

Climate, topography and the 3D structure of forests are major drivers affecting local species communities. However, little is known about how the specific functional traits of saproxylic (wood-living) beetles, involved in the recycling of wood, might be affected by those environmental characteristics.Here, we combine ecological and morphological traits available for saproxylic beetles and airborne laser scanning (ALS) data in Bayesian trait-based joint species distribution models to study how traits drive the distributions of more than 230 species in temperate forests of Europe.We found that elevation (as a proxy for temperature and precipitation) and the proportion of conifers played important roles in species occurrences while variables related to habitat heterogeneity and forest complexity were less relevant. Furthermore, we showed that local communities were shaped by environmental variation primarily through their ecological traits whereas morphological traits were involved only marginally. As predicted, ecological traits influenced species' responses to forest structure, and to other environmental variation, with canopy niche, wood decay niche and host preference as the most important ecological traits. Conversely, no links between morphological traits and environmental characteristics were observed. Both models, however, revealed strong phylogenetic signal in species' response to environmental characteristics.These findings imply that alterations of climate and tree species composition have the potential to alter saproxylic beetle communities in temperate forests. Additionally, ecological traits help explain species' responses to environmental characteristics and thus should prove useful in predicting their responses to future change. It remains challenging, however, to link simple morphological traits to species' complex ecological niches. Read the free Plain Language Summary for this article on the Journal blog.

4.
Sustain Sci ; 16(4): 1397-1403, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841582

RESUMEN

COVID-19 crisis has emphasized how poorly prepared humanity is to cope with global disasters. However, this crisis also offers a unique opportunity to move towards a more sustainable and equitable future. Here, we identify the underlying environmental, social, and economic chronic causes of the COVID-19 crisis. We argue in favour of a holistic view to initiate a socio-economic transition to improve the prospects for global sustainability and human well-being. Alternative approaches to "Business-As-Usual" for guiding the transition are already available for implementation. Yet, to ensure a successful and just transition, we need to change our priorities towards environmental integrity and well-being. This necessarily means environmental justice, a different worldview and a closer relationship with nature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA