RESUMEN
The kagome metal CsV[Formula: see text]Sb[Formula: see text] is an ideal platform to study the interplay between topology and electron correlation. To understand the fermiology of CsV[Formula: see text]Sb[Formula: see text], intensive quantum oscillation (QO) studies at ambient pressure have been conducted. However, due to the Fermi surface reconstruction by the complicated charge density wave (CDW) order, the QO spectrum is exceedingly complex, hindering a complete understanding of the fermiology. Here, we directly map the Fermi surface of the pristine CsV[Formula: see text]Sb[Formula: see text] by measuring Shubnikov-de Haas QOs up to 29 T under pressure, where the CDW order is completely suppressed. The QO spectrum of the pristine CsV[Formula: see text]Sb[Formula: see text] is significantly simpler than the one in the CDW phase, and the detected oscillation frequencies agree well with our density functional theory calculations. In particular, a frequency as large as 8,200 T is detected. Pressure-dependent QO studies further reveal a weak but noticeable enhancement of the quasiparticle effective masses on approaching the critical pressure where the CDW order disappears, hinting at the presence of quantum fluctuations. Our high-pressure QO results reveal the large, unreconstructed Fermi surface of CsV[Formula: see text]Sb[Formula: see text], paving the way to understanding the parent state of this intriguing metal in which the electrons can be organized into different ordered states.
RESUMEN
Transport measurements are presented up to fields of 29 T in the recently discovered heavy-fermion superconductor UTe_{2} with magnetic field H applied along the easy magnetization a axis of the body-centered orthorhombic structure. The thermoelectric power varies linearly with temperature above the superconducting transition, T_{SC}=1.5 K, indicating that superconductivity develops in a Fermi liquid regime. As a function of field the thermoelectric power shows successive anomalies which appear at critical values of the magnetic polarization. Remarkably, the lowest magnetic field instability for Hâ¥a occurs for the same critical value of the magnetization (0.4 µ_{B}) than the first order metamagnetic transition at 35 T for field applied along the b axis. It can be clearly identified as a Lifshitz transition. The estimated number of charge carriers at low temperature reveals a metallic ground state distinct from LDA calculations indicating that strong electronic correlations are a major issue.
RESUMEN
We present thermoelectric power and resistivity measurements in the ferromagnetic superconductor URhGe for a magnetic field applied along the hard magnetization b axis of the orthorhombic crystal. Reentrant superconductivity is observed near the spin reorientation transition at H_{R}=12.75 T, where a first order transition from the ferromagnetic to the polarized paramagnetic state occurs. Special focus is given to the longitudinal configuration, where both the electric and heat current are parallel to the applied field. The validity of the Fermi-liquid T^{2} dependence of the resistivity through H_{R} demonstrates clearly that no quantum critical point occurs at H_{R}. Thus, the ferromagnetic transition line at H_{R} becomes first order implying the existence of a tricritical point at finite temperature. The enhancement of magnetic fluctuations in the vicinity of the tricritical point stimulates the reentrance of superconductivity. The abrupt sign change observed in the thermoelectric power with the thermal gradient applied along the b axis together with the strong anomalies in the other directions is definitive macroscopic evidence that in addition a significant change of the Fermi surface appears through H_{R}.
RESUMEN
We report high magnetic field measurements of magnetic torque, thermoelectric power, magnetization, and the de Haas-van Alphen effect in CeIrIn_{5} across 28 T, where a metamagnetic transition was suggested in previous studies. The thermoelectric power displays two maxima at 28 and 32 T. Above 28 T, a new, low de Haas-van Alphen frequency with a strongly enhanced effective mass emerges, while the highest frequency observed at low field disappears entirely. This suggests a field-induced Lifshitz transition. However, longitudinal magnetization does not show any anomaly up to 33 T, thus ruling out a metamagnetic transition at 28 T.
RESUMEN
We report field and temperature dependent measurements of the thermoelectric power (TEP) and the Nernst effect in the itinerant metamagnet UCoAl. The magnetic field is applied along the easy magnetization c axis in the hexagonal crystal structure. The metamagnetic transition from the paramagnetic phase at zero field to the field induced ferromagnetic state is of first order at low temperatures and becomes a broad crossover above the critical temperature T(M)(â)â¼11 K. The field dependence of the TEP reveals that the effective mass of the hole carriers changes significantly at the metamagnetic transition. The TEP experiment reflects the existence of different carrier types in good agreement with band structure calculations and previous Hall effect experiments. According to the temperature dependence of the TEP, no Fermi liquid behavior appears in the paramagnetic state down to 150 mK, but is achieved only in the field induced ferromagnetic state.
RESUMEN
We report on the synthesis of new dinucleating phenol-based "end-off" compartmental ligands HLMeH and HLMe2 bearing two different binding sites, one bis(2-methylpyridyl)aminomethyl (BPA) and one thiosemicarbazone (TSC) site, and their corresponding copper(ii) complexes 1t and 2d. With the ligand HLMeH, a tetranuclear entity (1t) has been isolated in the solid state, whereas with HLMe2, which differs from HLMeH by a methyl substituent on the N-terminal amino group of the TSC arm, a dinuclear form (2d) is obtained. X-ray crystallography analysis shows that the nuclearity di vs. tetra is modulated by interactions between copper atoms and hydroxido bridges along with the sulphur atoms of TSC arms. From a magnetic point of view, 1t can be considered as an association of two dinuclear forms leading for both complexes to overall antiferromagnetic coupling. Analysis in acetonitrile solution of structure-property relationships has been carried out by comparing their UV/Vis, electrochemistry, ESI-MS, and NMR (variable temperature and DOSY = diffusion ordered spectroscopy) properties with trends from computational calculations (DFT). HRMAS-DOSY (High Resolution Magic Angle Spinning) NMR spectroscopy has been performed to evaluate the presence of different species in solution at room temperature.
RESUMEN
The antiferroquadrupolar ordering of is explored by probing thermal and thermoelectric transport. The lattice thermal conductivity drastically increases with the ordering, as a consequence of a large drop in carrier concentration and a strong electron-phonon coupling. The low level of carrier density in the ordered state is confirmed by the anomalously large values of the Seebeck and Nernst coefficients. The results are reminiscent of and suggest that both belong to the same class of partial metal-insulator transitions. The magnitude of the Nernst coefficient, larger than in any other metal, indicates a new route for Ettingshausen cooling at Kelvin temperatures.