Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 145(6): 1978-1991, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35141747

RESUMEN

Absence epilepsy belongs to genetic epilepsies and is characterized by recurrent generalized seizures that are concomitant with alterations of consciousness and associated with cognitive comorbidities. Little is known about the mechanisms leading to occurrence of epileptic seizures (i.e. epileptogenesis) and, in particular, it remains an open question as to whether neuronal hypersynchronization, a key feature in seizure initiation, could result from aberrant structural connectivity within neuronal networks endowing them with epileptic properties. In the present study, we addressed this question using a genetic model of absence epilepsy in the rat where seizures initiate in the whisker primary somatosensory cortex (wS1). We hypothesized that alterations in structural connectivity of neuronal networks within wS1 contribute to pathological neuronal synchronization responsible for seizures. First, we used rabies virus-mediated retrograde synaptic tracing and showed that cortical neurons located in both upper- and deep-layers of wS1 displayed aberrant and significantly increased connectivity in the genetic model of absence epilepsy, as highlighted by a higher number of presynaptic partners. Next, we showed at the functional level that disrupting these aberrant wS1 neuronal networks with synchrotron X-ray-mediated cortical microtransections drastically decreased both the synchronization and seizure power of wS1 neurons, as revealed by in vivo local field potential recordings with multichannel probes. Taken together, our data provide for the first time strong evidence that increased structural connectivity patterns of cortical neurons represent critical pathological substrates for increased neuronal synchronization and generation of absence seizures.


Asunto(s)
Epilepsia Tipo Ausencia , Animales , Electroencefalografía , Epilepsia Tipo Ausencia/genética , Neuronas/fisiología , Ratas , Convulsiones , Vibrisas
2.
Int J Audiol ; : 1-9, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37622173

RESUMEN

OBJECTIVE: Hearing disorders are common among music professionals, as they are frequently exposed to sound levels exceeding 100 dB(A). By assessing auditory fatigue, situations that are deleterious for hearing could be identified, allowing the deployment of preventive measures before permanent impairment occurs. However, little is known about the factors contributing to auditory fatigue. The objective is to determine the exposure parameters most influencing auditory fatigue during occupational exposure to amplified music. DESIGN: Auditory fatigue was defined as variations of both pure tone auditory (ΔPTA) and efferent reflex thresholds (ΔER) during the workday. Noise exposure was monitored and information on the volunteers was gathered using a questionnaire. STUDY SAMPLE: The population consisted of 43 adult volunteers exposed to amplified music (sound, light or stage technicians, security agents, barmen) and 24 unexposed administrative agents. RESULTS: ΔPTA and ΔER were positively correlated with the energy of noise exposure and its stability over time, i.e a steady noise tends to create more auditory fatigue. CONCLUSION: In addition to a global decrease of music levels and a systematic use of hearing protection, our results advocate for the provision of quiet periods within noise exposures as they reduce auditory fatigue accumulation and long-term risks for hearing.

3.
J Physiol ; 597(3): 951-966, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30548850

RESUMEN

KEY POINTS: Absence epilepsy is characterized by the occurrence of spike-and-wave discharges concomitant with an alteration of consciousness and is associated with cognitive comorbidities. In a genetic model of absence epilepsy in the rat, the genetic absence epilepsy rat from Strasbourg (GAERS), spike-and-wave discharges are shown to be initiated in the barrel field primary somatosensory cortex that codes whisker-related information, therefore playing an essential role in the interactions of rodents with their environment. Sensory-information processing is impaired in the epileptic barrel field primary somatosensory cortex of GAERS, with a delayed sensory-evoked potential and a duplicated neuronal response to whisker stimulation in in vivo extracellular recordings. Yet, GAERS present no defaults of performance in a texture discrimination task, suggesting the existence of a compensatory mechanism within the epileptic neuronal network. The results of the present study indicate that physiological primary functions are processed differently in an epileptic cortical network. ABSTRACT: Several neurodevelopmental pathologies are associated with disorganized cortical circuits that may alter primary functions such as sensory processes. In the present study, we investigated whether the function of a cortical area is altered in the seizure onset zone of absence epilepsy, a prototypical form of childhood genetic epilepsy associated with cognitive impairments. We first combined in vivo multichannel electrophysiological recordings and histology to precisely localize the seizure onset zone in the genetic absence epilepsy rat from Strasbourg (GAERS). We then investigated the functionality of this epileptic zone using extracellular silicon probe recordings of sensory-evoked local field potentials and multi-unit activity, as well as a behavioural test of texture discrimination. We show that seizures in this model are initiated in the barrel field part of the primary somatosensory cortex and are associated with high-frequency oscillations. In this cortex, we found an increased density of parvalbumin-expressing interneurons in layer 5 in GAERS compared to non-epileptic Wistar rats. Its functional investigation revealed that sensory abilities of GAERS are not affected in a texture-discrimination task, whereas the intracortical processing of sensory-evoked information is delayed and duplicated. Altogether, these results suggest that absence seizures are associated with an increase of parvalbumin-inhibitory neurons, which may promote the functional relationship between epileptic oscillations and high-frequency activities. Our findings suggest that cortical circuits operate differently in the epileptic onset zone and may adapt to maintain their ability to process highly specialized information.


Asunto(s)
Epilepsia Tipo Ausencia/fisiopatología , Corteza Somatosensorial/fisiopatología , Animales , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Epilepsia Tipo Ausencia/metabolismo , Potenciales Evocados/fisiología , Interneuronas/metabolismo , Interneuronas/fisiología , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Parvalbúminas/metabolismo , Ratas , Ratas Wistar , Convulsiones/metabolismo , Convulsiones/fisiopatología , Corteza Somatosensorial/metabolismo
4.
Neurobiol Dis ; 69: 156-68, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24874545

RESUMEN

Complex febrile seizures are often reported in the history of patients with mesio-temporal lobe epilepsy (MTLE) but their role in its physiopathology remains controversial. We postulated that prolonged hyperthermic seizures might, as a "single-hit", modify the hippocampal rhythms, facilitate epileptogenesis and influence subsequent epilepsy when a second-hit already exists or subsequently occurs. To test this hypothesis, we examined the effects of hyperthermic seizures (30min at 40-41°C) at postnatal day 10 on hippocampal activity in C57BL/6J mice in comparison to their littermates in sham conditions (22°C), with or without another insult. Using local field potential, we observed an asymmetry in the hippocampal susceptibility to seize in hyperthermic conditions. When these mice were adult, an asymmetrical increase of low frequency power was also recorded in the hippocampus when compared to sham animals. Using two different "two-hit" protocols, no increase in seizures or hippocampal discharge frequency or duration was observed, either in mice with a genetic CA3 dysplasia (Dcx knockout), or in mice injected with kainate into the dorsal hippocampus at P60. However, in the latter condition, which is reminiscent of MTLE, the hyperthermic seizures accelerated epileptogenesis and decreased the power in the high frequency gamma band, as well as decreasing the coherence between hippocampi and the involvement of the contralateral hippocampus during hippocampal paroxysmal discharges. Our data suggest that a single episode of prolonged hyperthermic seizures does not induce per se, but accelerates epileptogenesis and could lead to an asymmetrical dysfunction in the hippocampal rhythmicity in both physiological and pathological conditions.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiopatología , Convulsiones Febriles/fisiopatología , Animales , Ritmo Delta , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Electroencefalografía , Femenino , Ritmo Gamma/fisiología , Ácido Kaínico , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Neuropéptidos/deficiencia , Neuropéptidos/genética , Ritmo Teta
5.
Neurobiol Dis ; 51: 152-60, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23159741

RESUMEN

Radiotherapy has shown some efficacy for epilepsies but the insufficient confinement of the radiation dose to the pathological target reduces its indications. Synchrotron-generated X-rays overcome this limitation and allow the delivery of focalized radiation doses to discrete brain volumes via interlaced arrays of microbeams (IntMRT). Here, we used IntMRT to target brain structures involved in seizure generation in a rat model of absence epilepsy (GAERS). We addressed the issue of whether and how synchrotron radiotherapeutic treatment suppresses epileptic activities in neuronal networks. IntMRT was used to target the somatosensory cortex (S1Cx), a region involved in seizure generation in the GAERS. The antiepileptic mechanisms were investigated by recording multisite local-field potentials and the intracellular activity of irradiated S1Cx pyramidal neurons in vivo. MRI and histopathological images displayed precise and sharp dose deposition and revealed no impairment of surrounding tissues. Local-field potentials from behaving animals demonstrated a quasi-total abolition of epileptiform activities within the target. The irradiated S1Cx was unable to initiate seizures, whereas neighboring non-irradiated cortical and thalamic regions could still produce pathological oscillations. In vivo intracellular recordings showed that irradiated pyramidal neurons were strongly hyperpolarized and displayed a decreased excitability and a reduction of spontaneous synaptic activities. These functional alterations explain the suppression of large-scale synchronization within irradiated cortical networks. Our work provides the first post-irradiation electrophysiological recordings of individual neurons. Altogether, our data are a critical step towards understanding how X-ray radiation impacts neuronal physiology and epileptogenic processes.


Asunto(s)
Epilepsia Tipo Ausencia/radioterapia , Red Nerviosa/efectos de la radiación , Corteza Somatosensorial/efectos de la radiación , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia Tipo Ausencia/fisiopatología , Femenino , Red Nerviosa/fisiopatología , Ratas , Corteza Somatosensorial/fisiopatología , Terapia por Rayos X/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-35457327

RESUMEN

Evaluating risks associated with multiple occupational exposures is no easy task, especially when chemical and physical nuisances are combined. In most countries, public institutions have created databases, which gather extensive information on occupational exposures or work-related diseases. Unfortunately, these tools rarely integrate medical and exposure information, and, above all, do not take into account the possible adverse effects of co-exposures. Therefore, an attempt to exploit and join different existing databases for the assessment of the health effects of multiple exposures is described herein. This case study examines three French databases describing exposures to noise and/or ototoxic chemicals (i.e., toxic to the ear) and the incidence rate of occupational deafness in different sectors. The goals were (1) to highlight occupational sectors where the workers are the most (co)exposed and (2) to determine whether this approach could confirm the experimental data showing that this co-exposure increases the risk of developing hearing loss. The results present data per occupational sector exposing workers to noise only, ototoxic chemicals only, noise and ototoxic chemicals, and neither of these two nuisances. The ten sectors in which the proportion of exposed workers is the highest are listed. This analysis shows that the rate of hearing loss in these sectors is high but does not show an increased incidence of hearing loss in co-exposed sectors.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Ruido en el Ambiente de Trabajo , Enfermedades Profesionales , Exposición Profesional , Ototoxicidad , Pérdida Auditiva Provocada por Ruido/epidemiología , Pérdida Auditiva Provocada por Ruido/etiología , Humanos , Ruido/efectos adversos , Ruido en el Ambiente de Trabajo/efectos adversos , Enfermedades Profesionales/inducido químicamente , Enfermedades Profesionales/complicaciones , Enfermedades Profesionales/epidemiología , Exposición Profesional/efectos adversos
7.
Artículo en Inglés | MEDLINE | ID: mdl-36011533

RESUMEN

This study aimed to assess temporary and permanent auditory effects associated with occupational coexposure to low levels of noise and solvents. Cross-sectional study with 25 printing industry workers simultaneously exposed to low noise (<80 dBA TWA) and low levels of solvents. The control group consisted of 29 industry workers without the selected exposures. Participants answered a questionnaire and underwent auditory tests. Auditory fatigue was measured by comparing the acoustic reflex threshold before and after the workday. Workers coexposed to solvents and noise showed significantly worse results in auditory tests in comparison with the participants in the control group. Auditory brainstem response results showed differences in III−V interpeak intervals (p = 0.046 in right ear; p = 0.039 in left ear). Mean dichotic digits scores (exposed = 89.5 ± 13.33; controls = 96.40 ± 4.46) were only different in the left ear (p = 0.054). The comparison of pre and postacoustic reflex testing indicated mean differences (p = 0.032) between the exposed (4.58 ± 6.8) and controls (0 ± 4.62) groups. This study provides evidence of a possible temporary effect (hearing fatigue) at the level of the acoustic reflex of the stapedius muscle. The permanent effects were identified mainly at the level of the high brainstem and in the auditory ability of binaural integration.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Ruido en el Ambiente de Trabajo , Exposición Profesional , Estudios Transversales , Trastornos de la Audición , Humanos , Industrias , Ruido en el Ambiente de Trabajo/efectos adversos , Exposición Profesional/efectos adversos , Solventes/toxicidad
8.
J Occup Med Toxicol ; 15: 9, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32426022

RESUMEN

BACKGROUND: Carbon disulfide (CS2) exacerbates the effect of noise on hearing, and disrupts the vestibular system. The goal of this study was to determine whether these effects are also observed with intermittent CS2 exposure. METHODS: Rats were exposed for 4 weeks (5 days/week, 6 h/day) to a band noise at 106 dB SPL either alone or combined with continuous (63 ppm or 250 ppm) or intermittent (15 min/h or 2 × 15 min/h at 250 ppm) CS2. Hearing function was assessed by measuring distortion product otoacoustic emissions (DPOAEs); balance was monitored based on the vestibulo-ocular reflex (VOR). Functional measurements were performed before, at the end of exposure and 4 weeks later. Histological analyses of the inner ear were also performed following exposure and after the 4-week recovery period. RESULTS: The results obtained here confirmed that CS2 exposure exerts two differential temporary effects on hearing: (1) it attenuates the noise-induced DPOAE decrease below 6 kHz probably through action on the middle ear reflex when exposure lasts 15 min per hour, and (2) continuous exposure to 250 ppm for 6 h extends the frequency range affected by noise up to 9.6 kHz (instead of 6 kHz with noise alone). With regard to balance, the VOR was reversibly disrupted at the two highest doses of CS2 (2 × 15 min/h and continuous 250 ppm). No morphological alterations to the inner ear were observed. CONCLUSION: These results reveal that short periods of CS2 exposure can alter the sensitivity of the cochlea to noise at a dose equivalent to only 10 times the short-term occupational limit value, and intermittent exposure to CS2 (2 × 15 min/h) can alter the function of the vestibular system.

9.
Neurotoxicology ; 74: 58-66, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31121240

RESUMEN

Volatile organic solvents are frequently present in industrial atmospheres. Their lipophilic properties mean they quickly reach the brain following inhalation. Acute exposure to some solvents perturbs the middle ear reflex, which could jeopardize cochlear protection against loud noises. As the physiological mechanisms involved in this protective reflex are highly complex, in vivo rodent models are required to allow rapid and reliable identification of any adverse effects of solvents on the middle ear reflex (MER). In this study, MER amplitude was measured in anesthetized Brown-Norway rats by monitoring the decrease in distortion product otoacoustic emissions (DPOAEs) caused by a contralateral stimulation. Our screening test consisted in measuring the impact of inhalation of solvent vapors at 3000 ppm for 15 min on the MER amplitude. We had previously studied a selection of aromatic solvents with this model; here, we extended the analysis to volatile compounds from other chemical families. The results obtained shed light on the mechanisms involved in the interactions between solvents and their neuronal targets. Thus, benzene and chlorobenzene had the greatest effect on MER (≥ + 1.8 dB), followed by a group composed of toluene, styrene, p-xylene, m-xylene, tetrachloroethylene and cyclohexane, which had a moderate effect on the MER (between + 0.3 and + 0.7 dB). Finally, trichloroethylene, n-hexane, methyl-ethyl-ketone, acetone, o-xylene, and ethylbenzene had no effect on the MER. Thus, the effect of solvents on the MER is not simply linked to their lipophilicity, rather it depends on specific interactions with neuronal targets. These interactions appear to be governed by the compound's chemical structure, e.g. the presence of an aromatic ring and its steric hindrance. In addition, perturbation of the MER by a solvent is independent of its toxic effects on cochlear cells. As the MER plays a protective role against exposure to high-intensity noises, these findings could have a significant impact in terms of prevention for subjects exposed to both noise and solvents.


Asunto(s)
Vías Auditivas/efectos de los fármacos , Oído Medio/efectos de los fármacos , Reflejo Acústico/efectos de los fármacos , Solventes/toxicidad , Estimulación Acústica , Animales , Cóclea/patología , Relación Dosis-Respuesta a Droga , Ketamina/toxicidad , Masculino , Ruido/efectos adversos , Emisiones Otoacústicas Espontáneas/efectos de los fármacos , Ratas , Ratas Endogámicas BN , Relación Estructura-Actividad , Xilazina/toxicidad
10.
Neurotoxicology ; 67: 270-278, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29928918

RESUMEN

Chronic occupational exposure to carbon disulfide (CS2) has debilitating motor and sensory effects in humans, which can increase the risk of falls. Although no mention of vestibulotoxic effects is contained in the literature, epidemiological and experimental data suggest that CS2 could cause low-frequency hearing loss when associated with noise exposure. Low-frequency noise might also perturb the peripheral balance receptor through an as-yet unclear mechanism. Here, we studied how exposure to a low-frequency noise combined with 250-ppm CS2 affected balance in rats. Vestibular function was tested based on post-rotary nystagmus recorded by a video-oculography system. These measurements were completed by behavioral tests and analysis of the cerebellum to measure expression levels for gene expression associated with neurotoxicity. Assays were performed prior to and following a 4-week exposure, and again after a 4-week recovery period. Functional measurements were completed by histological analyses of the peripheral organs.Nystagmus was unaltered by exposure to noise alone, while CS2 alone caused a moderate 19% decrease of the saccade number. In contrast, coexposure to 250-ppm CS2 and low-frequency noise decreased both saccade number and duration by 33% and 34%, respectively. After four weeks, recovery was only partial but measures were not significantly different from pre-exposure values. Real-time quantitative polymerase chain reaction (RT-qPCR) analysis of cerebellar tissue revealed a slight but significant modification in expression levels for two genes linked to neurotoxicity in CS2-exposed animals. However, neither histopathological changes to the peripheral receptor nor behavioral differences were observed. Based on all these results, we propose that the effects of CS2 were due to reversible neurochemical disturbance of the efferent pathways managing post-rotatory nystagmus. Because the nervous structures involving the vestibular function appear particularly sensitive to CS2, post-rotary nystagmus could be used as an early, non-invasive measurement to diagnose CS2 intoxication as part of an occupational conservation program.


Asunto(s)
Estimulación Acústica/efectos adversos , Disulfuro de Carbono/toxicidad , Ruido/efectos adversos , Vestíbulo del Laberinto/efectos de los fármacos , Vestíbulo del Laberinto/fisiología , Animales , Disulfuro de Carbono/administración & dosificación , Femenino , Ruido/prevención & control , Exposición Profesional/efectos adversos , Exposición Profesional/prevención & control , Ratas , Ratas Long-Evans , Vestíbulo del Laberinto/patología
11.
Sci Rep ; 8(1): 184, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29317649

RESUMEN

Synchrotron-generated microplanar beams (microbeams) provide the most stereo-selective irradiation modality known today. This novel irradiation modality has been shown to control seizures originating from eloquent cortex causing no neurological deficit in experimental animals. To test the hypothesis that application of microbeams in the hippocampus, the most common source of refractory seizures, is safe and does not induce severe side effects, we used microbeams to induce transections to the hippocampus of healthy rats. An array of parallel microbeams carrying an incident dose of 600 Gy was delivered to the rat hippocampus. Immunohistochemistry of phosphorylated γ-H2AX showed cell death along the microbeam irradiation paths in rats 48 hours after irradiation. No evident behavioral or neurological deficits were observed during the 3-month period of observation. MR imaging showed no signs of radio-induced edema or radionecrosis 3 months after irradiation. Histological analysis showed a very well preserved hippocampal cytoarchitecture and confirmed the presence of clear-cut microscopic transections across the hippocampus. These data support the use of synchrotron-generated microbeams as a novel tool to slice the hippocampus of living rats in a minimally invasive way, providing (i) a novel experimental model to study hippocampal function and (ii) a new treatment tool for patients affected by refractory epilepsy induced by mesial temporal sclerosis.


Asunto(s)
Hipocampo/efectos de la radiación , Radiocirugia/efectos adversos , Animales , Hipocampo/metabolismo , Hipocampo/fisiología , Histonas/genética , Histonas/metabolismo , Masculino , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Radiocirugia/instrumentación , Radiocirugia/métodos , Ratas , Ratas Wistar , Sincrotrones
12.
Toxicol Sci ; 98(2): 510-25, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17483120

RESUMEN

We report on the transient and persistent effects of JP-8 jet fuel exposure on auditory function in rats. JP-8 has become the standard jet fuel utilized in the United States and North Atlantic Treaty Organization countries for military use and it is closely related to Jet A fuel, which is used in U.S. domestic aviation. Rats received JP-8 fuel (1000 mg/m(3)) by nose-only inhalation for 4 h and half of them were immediately subjected to an octave band of noise ranging between 97 and 105 dB in different experiments. The noise by itself produces a small, but permanent auditory impairment. The current permissible exposure level for JP-8 is 350 mg/m(3). Additionally, a positive control group received only noise exposure, and a fourth group consisted of untreated control subjects. Exposures occurred either on 1 day or repeatedly on 5 successive days. Impairments in auditory function were assessed using distortion product otoacoustic emissions and compound action potential testing. In other rats, tissues were harvested following JP-8 exposure for assessment of hydrocarbon levels or glutathione (GSH) levels. A single JP-8 exposure by itself at 1000 mg/m(3) did not disrupt auditory function. However, exposure to JP-8 and noise produced an additive disruption in outer hair cell function. Repeated 5-day JP-8 exposure at 1000 mg/m(3) for 4 h produced impairment of outer hair cell function that was most evident at the first postexposure assessment time. Partial though not complete recovery was observed over a 4-week postexposure period. The adverse effects of repeated JP-8 exposures on auditory function were inconsistent, but combined treatment with JP-8 + noise yielded greater impairment of auditory function, and hair cell loss than did noise by itself. Qualitative comparison of outer hair cell loss suggests an increase in outer hair cell death among rats treated with JP-8 + noise for 5 days as compared to noise alone. In most instances, hydrocarbon constituents of the fuel were largely eliminated in all tissues by 1-h postexposure with the exception of fat. Finally, JP-8 exposure did result in a significant depletion of total GSH that was observable in liver with a nonsignificant trend toward depletion in the brain and lung raising the possibility that the promotion of noise-induced hearing loss by JP-8 might have resulted from oxidative stress.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Pérdida Auditiva Provocada por Ruido/etiología , Hidrocarburos/toxicidad , Ruido/efectos adversos , Tejido Adiposo/metabolismo , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/sangre , Contaminantes Ocupacionales del Aire/farmacocinética , Animales , Umbral Auditivo/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cóclea/efectos de los fármacos , Cóclea/metabolismo , Cóclea/patología , Cóclea/fisiopatología , Glutatión/metabolismo , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/patología , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Hidrocarburos/análisis , Hidrocarburos/sangre , Hidrocarburos/farmacocinética , Hígado/efectos de los fármacos , Hígado/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratas , Ratas Long-Evans
13.
Toxicol Sci ; 98(2): 542-51, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17517824

RESUMEN

Ethylbenzene + toluene are known individually to have ototoxic potential at high exposure levels and with prolonged exposure times generally of 4-16 weeks. Both ethylbenzene + toluene are minor constituents of JP-8 jet fuel; this fuel has recently been determined to promote susceptibility to noise-induced hearing loss. Therefore, the current study evaluates the ototoxic potential of combined exposure to ethylbenzene + toluene exposure in a ratio calculated from the average found in three laboratories. Rats received ethylbenzene + toluene by inhalation and half of them were subjected simultaneously to an octave band of noise (OBN) of 93-95 dB. Another group received only the noise exposure which was designed to produce a small, but permanent auditory impairment while an unexposed control group was also included. In two separate experiments, exposures occurred either repeatedly on 5 successive days for 1 week or for 5 days on 2 successive weeks to 4000 mg/m(3) total hydrocarbons for 6 h based upon initial pilot studies. The concentration of toluene was 400 ppm and the concentration of ethylbenzene was 660 ppm. Impairments in auditory function were assessed using distortion product otoacoustic emissions and compound action potential testing. Following completion of these tests, the organs of Corti were dissected to permit evaluation of hair cell loss. The uptake and elimination of the solvents was assessed by harvesting key organs at two time points following ethylbenzene + toluene exposure from additional rats not used for auditory testing. Similarly, glutathione (GSH) levels were measured in light of suggestions that oxidative stress might result from solvent-noise exposures. Ethylbenzene + toluene exposure by itself at 4000 mg/m(3) for 6 h did not impair cochlear function or yield a loss of hair cells. However, when combined with a 93-dB OBN exposure combined solvent + noise did yield a loss in auditory function and a clear potentiation of outer hair cell death that exceeded the loss produced by noise alone. No evidence was found for a loss in total GSH in lung, liver, or brain as a consequence of ethylbenzene + toluene exposure.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Derivados del Benceno/toxicidad , Pérdida Auditiva Provocada por Ruido/etiología , Ruido/efectos adversos , Solventes/toxicidad , Tolueno/toxicidad , Contaminantes Ocupacionales del Aire/sangre , Contaminantes Ocupacionales del Aire/farmacocinética , Animales , Umbral Auditivo/efectos de los fármacos , Derivados del Benceno/sangre , Derivados del Benceno/farmacocinética , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cóclea/efectos de los fármacos , Cóclea/metabolismo , Cóclea/patología , Cóclea/fisiopatología , Glutatión/metabolismo , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/patología , Células Ciliadas Auditivas Externas/fisiopatología , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Hígado/efectos de los fármacos , Hígado/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratas , Ratas Long-Evans , Solventes/farmacocinética , Tolueno/sangre , Tolueno/farmacocinética
14.
Toxicology ; 238(2-3): 119-29, 2007 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-17618030

RESUMEN

The organophosphorus nerve agent soman is an irreversible cholinesterase (ChE) inhibitor that can produce long-lasting seizures and brain damage in which the neurotransmitters acetylcholine and glutamate are involved. These same neurotransmitters play key-roles in the auditory function. It was then assumed that exploring the hearing function may provide markers of the central events triggered by soman intoxication. In the present study, distortion product otoacoustic emissions (DPOAEs), a non-invasive audiometric method, were used to monitor cochlear functionality in rats administered with a moderate dose of soman (45 microg/kg). DPOAEs were investigated either 4h or 24h post-challenge. In parallel, the effects of soman on whole blood and brain ChE activity and on brain histology were also studied. The first main result is that DPOAE intensities were significantly decreased 4h post-soman and returned to baseline at 24h. The amplitude changes were well related to the severity of symptoms, with the greatest change being recorded in the rats that survived long-lasting convulsions. The second main result is that baseline DPOAEs recorded 8 days before soman appear to predict the severity of symptoms produced by the intoxication. Indeed, the lowest baseline DPOAEs corresponded to the occurrence of long-lasting convulsions and brain damage and to the greatest inhibition in central ChE. These results thus suggest that DPOAEs represent a promising non-invasive tool to assess and predict the central consequences of nerve agent poisoning. Further investigations will be carried out to assess the potential applications and the limits of this non-invasive method.


Asunto(s)
Síndromes de Neurotoxicidad/etiología , Emisiones Otoacústicas Espontáneas/efectos de los fármacos , Soman/toxicidad , Estimulación Acústica , Animales , Audiometría/métodos , Audiometría de Respuesta Evocada/métodos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Química Encefálica/efectos de los fármacos , Inhibidores de la Colinesterasa/administración & dosificación , Inhibidores de la Colinesterasa/sangre , Inhibidores de la Colinesterasa/toxicidad , Cóclea/efectos de los fármacos , Cóclea/fisiopatología , Inyecciones Subcutáneas , Masculino , Síndromes de Neurotoxicidad/patología , Síndromes de Neurotoxicidad/fisiopatología , Ratas , Ratas Wistar , Índice de Severidad de la Enfermedad , Soman/administración & dosificación , Soman/sangre , Análisis de Supervivencia , Factores de Tiempo
15.
Hear Res ; 224(1-2): 61-74, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17222524

RESUMEN

We hypothesize that the disruption of antioxidant defenses is a key mechanism whereby chemical contaminants can potentiate noise-induced hearing loss (NIHL). This hypothesis was tested using acrylonitrile (ACN), a widely used industrial chemical whose metabolism is associated with glutathione (GSH) depletion and cyanide (CN) generation. CN, in turn, can inhibit Cu/Zn superoxide dismutase (SOD). We have shown previously that ACN potentiates NIHL, even with noise exposure approaching permissible occupational levels. However, the relative involvement of GSH depletion and/or CN production in this potentiation is still unknown. In this study, we altered these metabolic pathways pharmacologically in order to further delineate the role of specific antioxidants in the protection of the cochlea. We investigated the effects of sodium thiosulfate (STS), a CN inhibitor, 4-methylpyrazole (4MP), a drug that blocks CN generation by competing with CYP2E1, and l-N-acetylcysteine (l-NAC), a pro-GSH drug, in order to distinguish between GSH depletion and CN production as the mechanism responsible for potentiation of NIHL by ACN. Long-Evans rats were exposed to an octave-band noise (97 dB SPL, 4h/day, 5 days) and ACN (50 mg/kg). Separate pre-treatments with STS (150 mg/kg), 4MP (100 mg/kg) and l-NAC (4 x 400 mg/kg) all dramatically reduced blood CN levels, but only l-NAC significantly protected GSH levels in both the liver and the cochlea. Concurrently, only l-NAC treatment decreased the auditory loss and hair cell loss resulting from ACN + noise, suggesting that GSH is involved in the protection of the cochlea against reactive oxygen species generated by moderate noise levels. On the other hand, CN does not seem to be involved in this potentiation.


Asunto(s)
Acrilonitrilo/toxicidad , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/metabolismo , Estrés Oxidativo/efectos de los fármacos , Acetilcisteína/farmacología , Acrilonitrilo/metabolismo , Potenciales de Acción , Animales , Antioxidantes/metabolismo , Cóclea/efectos de los fármacos , Cóclea/metabolismo , Cóclea/patología , Cóclea/fisiopatología , Cianuros/metabolismo , Fomepizol , Glutatión/metabolismo , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Emisiones Otoacústicas Espontáneas , Pirazoles/farmacología , Ratas , Ratas Long-Evans , Especies Reactivas de Oxígeno/metabolismo , Tiosulfatos/farmacología
16.
CNS Neurosci Ther ; 22(6): 497-506, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26899987

RESUMEN

AIMS: Mesial temporal lobe epilepsy (MTLE) is the most common form of drug-refractory epilepsy. Most of the morphological and electrophysiological features of human MTLE can be reproduced in a mouse by a unilateral intrahippocampal injection of kainate (MTLE mouse model). The effects of antiepileptic drugs (AEDs) on the occurrence of recurrent focal hippocampal seizures in this model remain to be specified. Here, we addressed the pharmacological reactivity of this model to the most commonly used AEDs. METHODS: Using depth electroencephalographical (EEG) recordings, we tested the dose-response effects of acute injection of nine AEDs on the occurrence of hippocampal paroxysmal discharges (HPDs) as well as on ictal and interictal power spectra in the MTLE mouse model. RESULTS: Valproate, carbamazepine, and lamotrigine dose dependently suppressed HPDs and modified the general behavior and/or EEG activity. Levetiracetam and pregabalin suppressed HPDs at high doses but without any behavioral nor interictal EEG changes. Finally, phenobarbital, tiagabine, vigabatrin, and diazepam suppressed HPDs in a dose-dependent manner at doses devoid of obvious behavioral effects. CONCLUSION: The MTLE mouse model displays a differential sensitivity to AEDs with a greater efficacy of drug that facilitates GABAergic transmission. This model provides an efficient tool to identify new treatment for drug-resistant forms of focal epilepsies.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia del Lóbulo Temporal/complicaciones , Convulsiones/tratamiento farmacológico , Convulsiones/etiología , Animales , Ondas Encefálicas/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Electrodos Implantados , Electroencefalografía , Epilepsia del Lóbulo Temporal/inducido químicamente , Agonistas de Aminoácidos Excitadores/toxicidad , Análisis de Fourier , Hipocampo/efectos de los fármacos , Ácido Kaínico/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo , Resultado del Tratamiento
17.
Environ Toxicol Pharmacol ; 19(3): 561-70, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-21783527

RESUMEN

This paper reviews different investigations carried out with Long-Evans rats on the influence of age on the ototoxicity induced by styrene and on the vulnerability to noise. The first part of this article is focused on the differences in auditory susceptibility to noise (92 or 97dB octave band noise centered at 8kHz, 6 h/day, 5 days/week, 4 weeks) and styrene (700ppm, 6h/d, 5 d/w, 4 w) between young (three and half months) and old (24 months) Long-Evans rats. Auditory evoked potential measures revealed that the old rats tend to be more sensitive than young rats to higher noise levels (97dB), but equally vulnerable to moderate levels (92dB). By contrast, the aged rats were virtually insensitive to 700ppm styrene compared to the young animals. Two additional studies were performed controlling and examining the influence of body weight and post-natal age on the sensitivity to styrene. Rats of the same age (21 weeks) and but having different body weight (∼310g versus ∼410g) did not show any difference of sensitivity to 700ppm styrene, whereas 14-week-old rats with the same body weight as 21-week-old rats (∼350g) revealed increased sensitivity to styrene. These results show that weight does not play a key role in the sensitivity to styrene, and suggest a long period of increased sensitivity to styrene during the first months of life.

18.
Hear Res ; 165(1-2): 156-64, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12031525

RESUMEN

The study was carried out to test whether or not cubic distortion otoacoustic emissions were more sensitive than auditory-evoked potentials for assessing styrene-induced hearing losses in the Long-Evans rat. For the purposes of comparison, changes in cubic distortion product otoacoustic emissions (DeltaDPOAE), evoked potential permanent threshold shifts (PTS) and outer hair cell losses were measured in a population of styrene-treated rats. Each rat was exposed to either 650 or 750 ppm of styrene for 4 weeks, 5 days per week, 6 h per day. Only the 750 ppm exposure caused significant hearing losses. For this concentration, DPOAEs appeared as sensitive to styrene as the audiometry performed with evoked potentials, but not more. A high coefficient of correlation [0.84< or =r< or =0.91] between DeltaDPOAE and PTS was obtained across the styrene-induced effects for frequencies ranging from 5 to 12 kHz. This experiment demonstrates that DPOAEs can be used to monitor the ototoxicity induced by styrene even though they cannot be considered as a more sensitive index of cochlear pathology than the evoked potentials, at least under our experimental conditions. Likewise evoked potentials, normal DPOAEs may not guarantee a normal cochlear status and therefore results of DPOAE measurements should be interpreted cautiously. The use of both techniques and the determination of the ratio DeltaDPOAE/PTS may be useful in determining the cause of hearing loss: mechanical or chemical process. Moreover, because of its non-invasive and objective characteristics, the use of DPOAEs could play a greater role in a prevention policy.


Asunto(s)
Sordera/inducido químicamente , Sordera/diagnóstico , Emisiones Otoacústicas Espontáneas , Distorsión de la Percepción/fisiología , Solventes , Estireno , Animales , Umbral Auditivo , Muerte Celular , Sordera/patología , Potenciales Evocados Auditivos , Células Ciliadas Auditivas Externas/patología , Células Ciliadas Auditivas Externas/fisiología , Masculino , Ratas , Ratas Long-Evans , Sensibilidad y Especificidad
19.
Hear Res ; 189(1-2): 83-91, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14987755

RESUMEN

Both noise and styrene can injure the cochlea, resulting in a reduction of incoming inputs from the cochlea to the central nervous system. In addition, styrene is known to have neurotoxic properties at high doses. The loss of inputs caused by noise has been shown to be compensated by a new equilibrium between excitatory and inhibitory influences within the inferior colliculus (IC). The main goal of this study was to determine whether styrene-induced hearing loss could also be counterbalanced by a GABAergic adjustment in the IC. For this purpose, rats were exposed to noise (97 dB SPL octave band noise centered at 8 kHz), or to a non-neurotoxic dose of styrene for 4 weeks (700 ppm, 6 h/day, 5 days/week). Auditory sensitivity was tested by evoked potentials, and cochlear damage was assessed by hair cell counts. Glutamate decarboxylase (GAD) was dosed in the IC by indirect competitive enzyme-linked immunosorbent assay. Both noise and styrene caused PTSs that reached 27.0 and 14.6 dB respectively. Outer hair cell (OHC) loss caused by noise did not exceed 9% in the first row, on the other hand OHC loss induced by styrene reached 63% in the third row. Only the noise caused a decrease of GAD of 37% compared to that measured in the controls. No significant modification of GAD concentration has been shown after styrene exposure. Thus, central compensation for cochlear damage may depend on the nature of the ototoxic agent. Unless styrene directly affects IC function, it is reasonable to assume that noise causes a modification of inhibitory neurotransmission within the structure because of impairment of afferent supply to the auditory brainstem. The present findings suggest that central compensation for cochlear damage can preferably occur when afferent fibers are altered.


Asunto(s)
Cóclea/efectos de los fármacos , Cóclea/lesiones , Glutamato Descarboxilasa/metabolismo , Pérdida Auditiva/inducido químicamente , Colículos Inferiores/enzimología , Isoenzimas/metabolismo , Ruido , Estireno/farmacología , Heridas y Lesiones/enzimología , Animales , Audiometría , Umbral Auditivo , Cóclea/patología , Ensayo de Inmunoadsorción Enzimática , Potenciales Evocados Auditivos , Células Ciliadas Auditivas/patología , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/enzimología , Pérdida Auditiva/patología , Pérdida Auditiva Provocada por Ruido/diagnóstico , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pruebas Auditivas , Masculino , Ratas , Ratas Long-Evans , Heridas y Lesiones/patología
20.
Neurotoxicol Teratol ; 25(1): 39-50, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12633735

RESUMEN

There is clear evidence that aromatic solvents can disrupt the auditory system in humans and animals. As far as animal models are concerned, solvent-induced hearing loss seems to be species-dependent. Indeed, most published data have been obtained with the rat, which shows mid-frequency cochlear deficits, whereas the guinea pig does not show any permanent hearing loss after solvent exposure. In the current investigation, the effects of two solvents, toluene (600 ppm) and styrene (1000 ppm), were studied in both Long-Evans rats and pigmented guinea pigs exposed 6 h/day for 5 consecutive days. Cochlear function was tested by using distortion product otoacoustic emissions (DPOAE) measured prior to the solvent exposure, 20 min after the end of the exposure and successively at 2 and 4 weeks post-exposure. In addition to cochlear testing, solvent concentrations in blood and urinary metabolites were measured. A cochlear histological analysis was performed at the end of the experiment. No decrease in DPOAE amplitude was observed in the guinea pig, even immediately following the end of exposure. The rat model showed severe disruption of auditory function and cochlear pathology, whereas the guinea pig had no disruption of DPOAE or cochlear pathological alterations. Therefore, the vulnerability of the cochlear function was strictly dependent on the species. As expected, an important difference in the styrene concentration in blood was observed: the solvent concentrations were fourfold higher in the rat than in the guinea pig. Therefore, it is clear that a pharmacokinetic or an uptake difference might explain the difference in susceptibility observed between the two species. Moreover, the metabolism pathways of the solvents were different depending on the species. Attempts to explain differences of vulnerability between the rat and guinea pig are addressed in the present paper.


Asunto(s)
Cóclea/efectos de los fármacos , Pérdida Auditiva Sensorineural/inducido químicamente , Estireno/toxicidad , Tolueno/toxicidad , Animales , Audiometría , Cóclea/patología , Cóclea/fisiopatología , Relación Dosis-Respuesta a Droga , Glioxilatos/sangre , Cobayas , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/patología , Células Ciliadas Auditivas Externas/ultraestructura , Pérdida Auditiva Sensorineural/fisiopatología , Hipuratos/sangre , Masculino , Ácidos Mandélicos/sangre , Microscopía Electrónica , Ratas , Ratas Long-Evans , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Estireno/sangre , Estireno/farmacocinética , Tolueno/sangre , Tolueno/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA