Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Metabolomics ; 16(4): 44, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32215752

RESUMEN

INTRODUCTION: To interpret metabolomic and lipidomic profiles, it is necessary to identify the metabolic reactions that connect the measured molecules. This can be achieved by putting them in the context of genome-scale metabolic network reconstructions. However, mapping experimentally measured molecules onto metabolic networks is challenging due to differences in identifiers and level of annotation between data and metabolic networks, especially for lipids. OBJECTIVES: To help linking lipids from lipidomics datasets with lipids in metabolic networks, we developed a new matching method based on the ChEBI ontology. The implementation is freely available as a python library and in MetExplore webserver. METHODS: Our matching method is more flexible than an exact identifier-based correspondence since it allows establishing a link between molecules even if a different level of precision is provided in the dataset and in the metabolic network. For instance, it can associate a generic class of lipids present in the network with the molecular species detailed in the lipidomics dataset. This mapping is based on the computation of a distance between molecules in ChEBI ontology. RESULTS: We applied our method to a chemical library (968 lipids) and an experimental dataset (32 modulated lipids) and showed that using ontology-based mapping improves and facilitates the link with genome scale metabolic networks. Beyond network mapping, the results provide ways for improvements in terms of network curation and lipidomics data annotation. CONCLUSION: This new method being generic, it can be applied to any metabolomics data and therefore improve our comprehension of metabolic modulations.


Asunto(s)
Ontología de Genes , Lípidos/genética , Redes y Vías Metabólicas/genética , Metabolómica , Lipidómica , Lípidos/química
2.
Anal Bioanal Chem ; 410(2): 633-647, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29184993

RESUMEN

Phospholipids (PLs) represent a class of metabolites of interest for evaluating the relationship between diet and the development of several metabolic diseases. Given that PLs are rich in unsaturated fatty acids, they can be oxidized. Because of their structure and reactivity, oxidized phospholipids (PLs-Ox) are increasingly recognized as markers of oxidative stress and of various diseases associated with inflammation. Therefore, there is a growing interest in studying PLs-Ox in lipidomics. Because of their limited commercial availability, very little information is currently available in databases to identify these molecules. The aim of this study is to acquire new knowledge about PLs-Ox in order to propose an analytical strategy for their analyses. For this purpose, a synthesis method of PLs-Ox, in auto-oxidation, has been developed and applied on phosphatidylcholine and phosphatidylethanolamine molecular species with various chain lengths, degree, and position of unsaturations. An analysis method based on mass (MS) and tandem mass spectrometry coupled to electrospray ionization was then developed and enabled the identification of a great diversity of long- and short-chain oxidation products. Formation kinetics of oxidation products was evaluated. Results showed that the formation of oxidized compounds was largely influenced by the degree of unsaturation on fatty acid chains. Oxidation time promotes the formation of some biologically important oxidation products. Coupling the MS method with liquid chromatography in flow injection analysis mode enabled the development of a full analytical strategy. Structural analysis of PLs-Ox allowed the enrichment of databases with important information to identify these molecules in biological matrices.


Asunto(s)
Fosfolípidos/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Oxidación-Reducción , Estrés Oxidativo , Espectrometría de Masa por Ionización de Electrospray/métodos
3.
Biochim Biophys Acta ; 1861(1): 12-20, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26477381

RESUMEN

Excessive energy intake leads to fat overload and the formation of lipotoxic compounds mainly derived from the saturated fatty acid palmitate (PAL), thus promoting insulin resistance (IR) in skeletal muscle. N-3 polyunsaturated fatty acids (n-3PUFA) may prevent lipotoxicity and IR. The purpose of this study was to examine the differential effects of n-3PUFA on fatty acid metabolism and insulin sensitivity in muscle cells. C2C12 myotubes were treated with 500 µM of PAL without or with 50 µM of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for 16 h. PAL decreased insulin-dependent AKT activation and glucose uptake and increased the synthesis of ceramides and diglycerides (DG) derivatives, leading to protein kinase Cθ activation. EPA and DHA, but not ALA, prevented PAL-decreased AKT activation but glucose uptake was restored to control values by all n-3PUFA vs. PAL. Total DG and ceramide contents were decreased by all n-3PUFA, but only EPA and DHA increased PAL ß-oxidation, decreased PAL incorporation into DG and reduced protein kinase Cθ activation. EPA and DHA emerge as better candidates than ALA to improve fatty acid metabolism in skeletal muscle cells, notably via their ability to increase mitochondrial ß-oxidation.


Asunto(s)
Ácidos Grasos Omega-3/farmacología , Mioblastos Esqueléticos/efectos de los fármacos , Palmitatos/toxicidad , Animales , Células Cultivadas , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina , Isoenzimas/fisiología , Fluidez de la Membrana/efectos de los fármacos , Ratones , Mioblastos Esqueléticos/metabolismo , Fosforilación , Proteína Quinasa C/fisiología , Proteína Quinasa C-theta
4.
J Nutr ; 147(12): 2262-2271, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28835387

RESUMEN

Background: A promising strategy to help older adults preserve or build muscle mass is to optimize muscle anabolism through providing an adequate amount of high-quality protein at each meal.Objective: This "proof of principle" study investigated the acute effect of supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink on postprandial muscle protein synthesis and longer-term effect on muscle mass in healthy older adults.Methods: A randomized, placebo-controlled, double-blind study was conducted in 24 healthy older men [mean ± SD: age 71 ± 4 y; body mass index (in kg/m2) 24.7 ± 2.8] between September 2012 and October 2013 at the Unit of Human Nutrition, University of Auvergne, Clermont-Ferrand, France. Participants received a medical nutrition drink [test group; 21 g leucine-enriched whey protein, 9 g carbohydrates, 3 g fat, 800 IU cholecalciferol (vitamin D3), and 628 kJ] or a noncaloric placebo (control group) before breakfast for 6 wk. Mixed muscle protein fractional synthesis rate (FSR) was measured at week 0 in the basal and postprandial state, after study product intake with a standardized breakfast with the use of l-[2H5]-phenylalanine tracer methodology. The longer-term effect of the medical nutrition drink was evaluated by measurement of appendicular lean mass, representing skeletal muscle mass at weeks 0 and 6, by dual-energy X-ray absorptiometry.Results: Postprandial FSR (0-240 min) was higher in the test group than in the control group [estimate of difference (ED): 0.022%/h; 95% CI: 0.010%/h, 0.035%/h; ANCOVA, P = 0.001]. The test group gained more appendicular lean mass than the control group after 6 wk (ED: 0.37 kg; 95% CI: 0.03, 0.72 kg; ANCOVA, P = 0.035), predominantly as leg lean mass (ED: 0.30 kg; 95% CI: 0.03, 0.57 kg; ANCOVA, P = 0.034).Conclusions: Supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink stimulated postprandial muscle protein synthesis and increased muscle mass after 6 wk of intervention in healthy older adults and may therefore be a way to support muscle preservation in older people. This trial was registered at www.trialregister.nl as NTR3471.


Asunto(s)
Bebidas/análisis , Leucina/administración & dosificación , Proteínas Musculares/biosíntesis , Vitamina D/administración & dosificación , Proteína de Suero de Leche/administración & dosificación , Proteína de Suero de Leche/química , Anciano , Desayuno , Dieta , Método Doble Ciego , Ingestión de Energía , Análisis de los Alimentos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Músculo Esquelético , Periodo Posprandial
5.
Eur J Nutr ; 54(7): 1139-49, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25370302

RESUMEN

PURPOSE: The aim of this study was to evaluate and compare the musculoskeletal effects induced by ovariectomy-related fat mass deposition against the musculoskeletal effects caused by a high-fat diet. METHODS: A group of adult female rats was ovariectomized and fed a control diet. Two additional groups were sham-operated and fed a control or a high-fat diet for 19 weeks. Distal femur and serum bone parameters were measured to assess bone metabolism. Muscle protein metabolism, mitochondrial markers and triglyceride content were evaluated in tibialis anterior. Triglyceride content was evaluated in liver. Circulating inflammatory and metabolic markers were determined. RESULTS: The high-fat diet and ovariectomy led to similar increases in fat mass (+36.6-56.7%; p < 0.05) but had different impacts on bone and muscle tissues and inflammatory markers. Consumption of the high-fat diet led to decreased bone formation (-38.4%; p < 0.05), impaired muscle mitochondrial metabolism, muscle lipotoxicity and a 20.9% increase in tibialis anterior protein synthesis rate (p < 0.05). Ovariectomy was associated with higher bone turnover as bone formation increased +72.7% (p < 0.05) and bone resorption increased +76.4% (p < 0.05), leading to bone loss, a 17.9% decrease in muscle protein synthesis rate (p < 0.05) and liver lipotoxicity. CONCLUSIONS: In female rats, high-fat diet and ovariectomy triggered similar gains in fat mass but had different impacts on bone and muscle metabolism. The ovariectomy-induced mechanisms affecting the musculoskeletal system are mainly caused by estrogen depletion, which surpasses the potential-independent effect of adiposity.


Asunto(s)
Adiposidad , Remodelación Ósea , Dieta Alta en Grasa/efectos adversos , Fémur/metabolismo , Músculo Esquelético/metabolismo , Ovariectomía/efectos adversos , Animales , Glucemia/metabolismo , Colesterol/sangre , Femenino , Insulina/sangre , Metabolismo de los Lípidos , Hígado/metabolismo , Tamaño de los Órganos , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Triglicéridos/metabolismo
6.
Food Res Int ; 170: 112978, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316015

RESUMEN

The development of plant-based protein foods may facilitate the decrease in animal product consumption in western countries. Wheat proteins, as a starch coproduct, are available in large amounts and are good candidates for this development. We investigated the effect of a new texturing process on wheat protein digestibility and implemented strategies aimed at enhancing the lysine content of the product developed. Protein true ileal digestibility (TID) was determined in minipigs. In a preliminary experiment, the TID of wheat protein (WP), texturized wheat protein (TWP), TWP enriched with free lysine (TWP-L), or with chickpea flour (TWP-CP) was measured and compared to beef meat proteins. In the main experiment, minipigs (n = 6) were fed a dish (blanquette type) containing 40 g of protein in the form of TWP-CP, TWP-CP enriched with free lysine TWP-CP+L, chicken filet, or texturized soy, together with quinoa (18.5 g of protein) in order to improve meal supply of lysine. Wheat protein texturing did not affect total amino acid TID (96.8 % for TWP vs 95.3 % for WP), which was not different from that of beef meat (95.8 %). Chickpea addition did not affect protein TID (96.5 % for TWP-CP vs 96.8 % for TWP). The Digestible Indispensable Amino Acid Score for adults of the dish combining TWP-CP+L with quinoa was 91, whereas it was 110 and 111 for the dishes containing chicken filet or texturized soy. The above results show that, by optimizing lysine content through the formulation of the product, wheat protein texturization can enable the development of protein-rich products of nutritional quality compatible with quality protein intake in the context of a complete meal.


Asunto(s)
Lisina , Triticum , Animales , Porcinos , Bovinos , Porcinos Enanos , Aminoácidos , Comidas , Proteínas de Plantas , Pollos
7.
Nutrients ; 15(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686798

RESUMEN

Aging is associated with a decline in muscle mass and function, leading to increased risk for mobility limitations and frailty. Dietary interventions incorporating specific nutrients, such as pea proteins or inulin, have shown promise in attenuating age-related muscle loss. This study aimed to investigate the effect of pea proteins given with inulin on skeletal muscle in old rats. Old male rats (20 months old) were randomly assigned to one of two diet groups for 16 weeks: a 'PEA' group receiving a pea-protein-based diet, or a 'PEA + INU' group receiving the same pea protein-based diet supplemented with inulin. Both groups showed significant postprandial stimulation of muscle p70 S6 kinase phosphorylation rate after consumption of pea proteins. However, the PEA + INU rats showed significant preservation of muscle mass with time together with decreased MuRF1 transcript levels. In addition, inulin specifically increased PGC1-α expression and key mitochondrial enzyme activities in the plantaris muscle of the old rats. These findings suggest that dietary supplementation with pea proteins in combination with inulin has the potential to attenuate age-related muscle loss. Further research is warranted to explore the underlying mechanisms and determine the optimal dosage and duration of intervention for potential translation to human studies.


Asunto(s)
Proteínas de Guisantes , Humanos , Masculino , Animales , Ratas , Lactante , Inulina/farmacología , Músculo Esquelético , Suplementos Dietéticos , Envejecimiento
8.
Nutrients ; 13(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34959786

RESUMEN

Plant proteins are attracting rising interest due to their pro-health benefits and environmental sustainability. However, little is known about the nutritional value of pea proteins when consumed by older people. Herein, we evaluated the digestibility and nutritional efficiency of pea proteins compared to casein and whey proteins in old rats. Thirty 20-month-old male Wistar rats were assigned to an isoproteic and isocaloric diet containing either casein (CAS), soluble milk protein (WHEY) or Pisane™ pea protein isolate for 16 weeks. The three proteins had a similar effect on nitrogen balance, true digestibility and net protein utilization in old rats, which means that different protein sources did not alter body composition, tissue weight, skeletal muscle protein synthesis or degradation. Muscle mitochondrial activity, inflammation status and insulin resistance were similar between the three groups. In conclusion, old rats used pea protein with the same efficiency as casein or whey proteins, due to its high digestibility and amino acid composition. Using these plant-based proteins could help older people diversify their protein sources and more easily achieve nutritional intake recommendations.


Asunto(s)
Anabolizantes/farmacología , Proteínas de la Leche/farmacología , Proteínas Musculares/metabolismo , Proteínas de Guisantes/farmacología , Aminoácidos/metabolismo , Animales , Caseínas/farmacología , Digestión/efectos de los fármacos , Masculino , Músculo Esquelético/efectos de los fármacos , Valor Nutritivo , Proteolisis/efectos de los fármacos , Ratas , Ratas Wistar , Proteína de Suero de Leche/farmacología
9.
Nutrients ; 12(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485842

RESUMEN

The mechanisms that are responsible for sarcopenia are numerous, but the altered muscle protein anabolic response to food intake that appears with advancing age plays an important role. Dietary protein quality needs to be optimized to counter this phenomenon. Blending different plant proteins is expected to compensate for the lower anabolic capacity of plant-based when compared to animal-based protein sources. The objective of this work was to evaluate the nutritional value of pasta products that were made from a mix of wheat semolina and faba bean, lentil, or split pea flour, and to assess their effect on protein metabolism as compared to dietary milk proteins in old rats. Forty-three old rats have consumed for six weeks isoproteic and isocaloric diets containing wheat pasta enriched with 62% to 79% legume protein (depending on the type) or milk proteins, i.e., casein or soluble milk proteins (SMP). The protein digestibility of casein and SMP was 5% to 14% higher than legume-enriched pasta. The net protein utilization and skeletal muscle protein synthesis rate were equivalent either in rats fed legume-enriched pasta diets or those fed casein diet, but lower than in rats fed SMP diet. After legume-enriched pasta intake, muscle mass, and protein accretion were in the same range as in the casein and SMP groups. Mixed wheat-legume pasta could be a nutritional strategy for enhancing the protein content and improving the protein quality, i.e., amino acid profile, of this staple food that is more adequate for maintaining muscle mass, especially for older individuals.


Asunto(s)
Ingestión de Alimentos/fisiología , Fenómenos Fisiológicos Nutricionales del Anciano/fisiología , Fabaceae , Proteínas de la Leche/administración & dosificación , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Valor Nutritivo , Proteínas de Vegetales Comestibles/administración & dosificación , Proteínas/metabolismo , Triticum , Factores de Edad , Proteínas Dietéticas Animales/administración & dosificación , Proteínas Dietéticas Animales/metabolismo , Animales , Caseínas/administración & dosificación , Caseínas/metabolismo , Masculino , Proteínas de la Leche/metabolismo , Proteínas de Vegetales Comestibles/metabolismo , Proteolisis , Ratas Wistar
10.
J Physiol Biochem ; 74(4): 569-577, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29637446

RESUMEN

High-sugar intake and senescence share common deleterious effects, in particular in liver, but combination of these two factors was little studied. Our aims were to examine the effect of a high-sucrose diet in liver of old rats and also the potential benefices of a polyphenol/micronutrient supplementation. Four groups of 22-month-old male rats fed during 5 months with a diet containing either 13 or 62% sucrose, supplemented or not with rutin, vitamin E, A, D, selenium, and zinc were compared. We measured liver macronutrient composition, glycation/oxidative stress, enzyme activities (lipogenesis, ß-oxidation, fructokinase), gene expression (enzymes and transcription factors), in vivo protein synthesis rates and plasma parameters. Sucrose induced an increase in plasma and liver lipid content, and a stimulation of liver protein synthesis rates. Gene expression was little changed by sucrose, with lower levels for LXR-α and LXR-ß. Polyphenol/micronutrient supplementation tended to limit liver triglyceride infiltration through variations in fatty acid synthase, acyl coA oxidase, and possibly ATP-citrate lyase activities. In conclusion, despite differences in enzymatic regulations, and blunted responses of gene expression, high-sucrose diet was still able to induce a marked increase in liver lipid content in old animals. However, it probably attenuated the positive impact of polyphenol/micronutrients.


Asunto(s)
Envejecimiento , Antioxidantes/uso terapéutico , Sacarosa en la Dieta/efectos adversos , Suplementos Dietéticos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Rutina/uso terapéutico , Animales , Antioxidantes/metabolismo , Dieta de Carga de Carbohidratos/efectos adversos , Regulación del Desarrollo de la Expresión Génica , Glicosilación , Metabolismo de los Lípidos , Hígado/crecimiento & desarrollo , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Masculino , Micronutrientes/administración & dosificación , Micronutrientes/metabolismo , Micronutrientes/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Distribución Aleatoria , Ratas Wistar
11.
Clin Nutr ; 26(1): 30-40, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16996660

RESUMEN

BACKGROUND & AIM: Polytrauma patients are characterized by a negative nitrogen balance and muscle wasting. Standard nutrition is relatively inefficient to improve muscle protein turnover. The aim of this study was to investigate the effect of enteral nutrition (EN) supplemented with specific amino acids on protein metabolism in polytrauma patients. METHODS: In a double blind study, 12 polytrauma patients were randomized to receive EN supplemented with either a mixture of cysteine, threonine, serine and aspartate (AA patients) or alanine at isonitrogenous levels (Ala patients). An intravenous infusion of l-[1-(13)C]-leucine was performed in the fed state between day 9 and 12 post-injury (Df) in patients and in a group of healthy volunteers (n=8) (EN+Ala) to measure whole body leucine kinetics, plasma and muscle protein synthesis rates. Nitrogen balance, 3-methyl histidine excretion were measured from day 3 to Df. RESULTS: The contribution of total plasma proteins to whole body protein synthesis was greatly increased, from 11% in healthy volunteers to about 25% in polytrauma patients. AA supplementation had no effect on nitrogen balance, leucine kinetics or plasma protein synthesis in patients. In contrast, the urinary excretion of 3-methyl histidine tended to decrease along the study in the AA supplemented group compared to an increase in the Ala group. Muscle protein synthesis tended to be higher in the AA group than in the Ala group (46%, P=0.065). CONCLUSION: During injury, an increased supply of cysteine, threonine, serine and aspartate could be able to better cover the specific amino requirements, thus resulting in improved muscle protein synthesis without impairment of acute phase protein synthesis.


Asunto(s)
Aminoácidos/administración & dosificación , Proteínas Sanguíneas/biosíntesis , Cuidados Críticos/métodos , Nutrición Enteral/métodos , Proteínas Musculares/biosíntesis , Heridas y Lesiones/terapia , Adulto , Anciano , Aminoácidos/sangre , Aminoácidos/metabolismo , Isótopos de Carbono , Suplementos Dietéticos , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenómenos Fisiológicos de la Nutrición , Necesidades Nutricionales , Resultado del Tratamiento , Heridas y Lesiones/metabolismo
12.
Nutrition ; 23(4): 323-31, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17367997

RESUMEN

OBJECTIVE: We previously found that aging was characterized by a decreased sensitivity of muscle protein synthesis to leucine and that a free leucine-supplemented diet corrected this defect in old rats and elderly humans. The present experiment was undertaken to evaluate the efficiency of selected leucine-rich proteins to stimulate postprandial muscle protein synthesis in old rats to optimize nutritional protein support in the elderly. METHODS: Sixty rats (22 mo old) received an experimental meal for the first hour of feeding and a standard diet for the rest of the day for 30 d. Experimental meals contained milk proteins that differed in leucine content: beta-lactoglobulin (14.5% leucine), Prolacta (13.4%), alpha-lactalbumin (10.9%), and casein (10%). As a control, a fifth group was added that received herring flour protein (7.3% leucine). Muscle protein synthesis was determined in vivo in the postprandial state at the end of the 30-d nutritional period using the flooding dose method (1-(13)C phenylalanine). RESULTS: Leucine intake and plasma leucine concentrations were significantly increased in rats fed meals containing the leucine-rich proteins (i.e., beta-lactoglobulin and Prolacta). As previously observed with free leucine-supplemented meals, postprandial muscle protein synthesis was significantly improved in rats fed the meals containing the leucine-rich proteins. Interestingly, the beneficial effect was maintained after the 30-d supplementation. CONCLUSION: The results indicated that leucine-rich proteins were efficient in improving muscle protein synthesis in old rats. Thus, nutritional supplements containing such proteins may be efficient in preventing sarcopenia in the elderly and would represent a safe and optimized nutritional strategy. However, further experiments are necessary to determine the duration of such nutritional support to obtain a significant protein gain in muscle.


Asunto(s)
Envejecimiento/fisiología , Leucina/farmacocinética , Proteínas de la Leche , Proteínas Musculares/biosíntesis , Periodo Posprandial , Envejecimiento/sangre , Aminoácidos/sangre , Animales , Isótopos de Carbono , Relación Dosis-Respuesta a Droga , Leucina/sangre , Leucina/metabolismo , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar , Proteína de Suero de Leche
13.
Mol Nutr Food Res ; 61(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28758352

RESUMEN

SCOPE: One strategy to manage malnutrition in older patients is to increase protein and energy intake. Here, we evaluate the influence of protein quality during refeeding on improvement in muscle protein and energy metabolism. METHODS AND RESULTS: Twenty-month-old male rats (n = 40) were fed 50% of their spontaneous intake for 12 weeks to induce malnutrition, then refed ad libitum with a standard diet enriched with casein or soluble milk proteins (22%) for 4 weeks. A 13C-valine was infused to measure muscle protein synthesis and expression of MuRF1, and MAFbx was measured to evaluate muscle proteolysis. mTOR pathway activation and mitochondrial function were assessed in muscle. Malnutrition was associated with a decrease in body weight, fat mass, and lean mass, particularly muscle mass. Malnutrition decreased muscle mTOR pathway activation and protein FSR associated with increased MuRF1 mRNA levels, and decreased mitochondrial function. The refeeding period partially restored fat mass and lean mass. Unlike the casein diet, the soluble milk protein diet improved muscle protein metabolism and mitochondrial function in old malnourished rats. CONCLUSIONS: These results suggest that providing better-quality proteins during refeeding may improve efficacy of renutrition in malnourished older patients.


Asunto(s)
Suplementos Dietéticos , Digestión , Fenómenos Fisiológicos Nutricionales del Anciano , Desnutrición/dietoterapia , Proteínas de la Leche/uso terapéutico , Proteínas Musculares/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Metabolismo Energético , Imagen por Resonancia Magnética , Masculino , Desnutrición/diagnóstico por imagen , Desnutrición/metabolismo , Proteínas de la Leche/química , Proteínas de la Leche/metabolismo , Mitocondrias Musculares/enzimología , Mitocondrias Musculares/metabolismo , Desarrollo de Músculos , Proteínas Musculares/genética , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Proteolisis , Distribución Aleatoria , Ratas Wistar , Proteínas Ligasas SKP Cullina F-box/genética , Solubilidad , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Imagen de Cuerpo Entero
14.
J Nutr Biochem ; 46: 30-38, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28445792

RESUMEN

We investigated the impact of vitamin D deficiency and repletion on muscle anabolism in old rats. Animals were fed a control (1 IU vitamin D3/g, ctrl, n=20) or a vitamin D-depleted diet (VDD; 0 IU, n=30) for 6 months. A subset was thereafter sacrificed in the control (ctrl6) and depleted groups (VDD6). Remaining control animals were kept for 3 additional months on the same diet (ctrl9), while a part of VDD rats continued on a depleted diet (VDD9) and another part was supplemented with vitamin D (5 IU, VDS9). The ctr16 and VDD6 rats and the ctr19, VDD9 and VDS9 rats were 21 and 24 months old, respectively. Vitamin D status, body weight and composition, muscle strength, weight and lipid content were evaluated. Muscle protein synthesis rate (fractional synthesis rate; FSR) and the activation of controlling pathways were measured. VDD reduced plasma 25(OH)-vitamin D, reaching deficiency (<25 nM), while 25(OH)-vitamin D increased to 118 nM in the VDS group (P<.0001). VDD animals gained weight (P<.05) with no corresponding changes in lean mass or muscle strength. Weight gain was associated with an increase in fat mass (+63%, P<.05), intramyocellular lipids (+75%, P<.05) and a trend toward a decreased plantaris weight (-19%, P=.12). Muscle FSR decreased by 40% in the VDD group (P<.001), but was restored by vitamin D supplementation (+70%, P<.0001). Such changes were linked to an over-phosphorylation of eIF2α. In conclusion, vitamin D deficiency in old rats increases adiposity and leads to reduced muscle protein synthesis through activation of eIF2α. These disorders are restored by vitamin D supplementation.


Asunto(s)
Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Deficiencia de Vitamina D/metabolismo , Vitamina D/farmacología , Envejecimiento/fisiología , Animales , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Suplementos Dietéticos , Ingestión de Alimentos/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Tamaño de los Órganos/efectos de los fármacos , Ratas Wistar , Transducción de Señal , Vitamina D/sangre , Deficiencia de Vitamina D/dietoterapia , Deficiencia de Vitamina D/fisiopatología
15.
Clin Nutr ; 25(4): 634-42, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16387396

RESUMEN

BACKGROUND AND AIMS: Muscle wasting and increased synthesis of proteins and compounds involved in host defense characterize severe injury. The aims of the studies reported were to determine which amino acids exhibited an increased tissue content linked to anabolic processes in infected rats by comparison with healthy pair-fed controls, and to explore whether diets supplemented with these amino acids attenuate the catabolic response to infection. METHODS: Total amino acid content of the liver and the rest of the body were measured in control well-fed rats, in infected rats and their pair-fed controls 2 days after infection. In the nutritional protocols, infected rats were fed with a diet supplemented with alanine (basal diet), or threonine, serine, aspartate, asparagine and arginine (AA) or AA+cysteine (complete diet). RESULTS: Infection significantly increased liver total amino acid content by 38% for most amino acids. In contrast, the percentage increase was cysteine 79.3, threonine 45.3, aspartate-asparagine 46.3 and serine 46.5. Whole body without liver content of most amino acids decreased after infection due to the catabolic response, while the content of cysteine increased by 6% (P<0.05) and those of threonine and arginine did not decrease. After infection, animals fed the complete diet lost less weight than animals fed the basal diet (P<0.05). Furthermore, AA plus cysteine supplementation reduced significantly urinary nitrogen excretion and muscle wasting. CONCLUSIONS: The results provide evidence that diet supplementation with cysteine, threonine, serine, aspartate-asparagine and arginine supports the synthesis of vital proteins to spare body protein catabolism during infection.


Asunto(s)
Aminoácidos/metabolismo , Hígado/metabolismo , Atrofia Muscular/prevención & control , Nitrógeno/metabolismo , Fenómenos Fisiológicos de la Nutrición , Sepsis/metabolismo , Animales , Cisteína/metabolismo , Suplementos Dietéticos , Masculino , Atrofia Muscular/metabolismo , Deficiencia de Proteína/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
16.
J Nutr Biochem ; 26(9): 949-59, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26007287

RESUMEN

Skeletal muscle plays a major role in the control of whole body glucose disposal in response to insulin stimulus. Excessive supply of fatty acids to this tissue triggers cellular and molecular disturbances leading to lipotoxicity, inflammation, mitochondrial dysfunctions, impaired insulin response and decreased glucose uptake. This study was conducted to analyze the preventive effect of docosahexaenoic acid (DHA), a long-chain polyunsaturated n-3 fatty acid, against insulin resistance, lipotoxicity and inflammation in skeletal muscle at doses compatible with nutritional supplementation. DHA (30 µM) prevented insulin resistance in C2C12 myotubes exposed to palmitate (500 µM) by decreasing protein kinase C (PKC)-θ activation and restoring cellular acylcarnitine profile, insulin-dependent AKT phosphorylation and glucose uptake. Furthermore, DHA protected C2C12 myotubes from palmitate- or lipopolysaccharide-induced increase in Ptgs2, interleukin 6 and tumor necrosis factor-α mRNA level, probably through the inhibition of p38 MAP kinase and c-Jun amino-terminal kinase. In LDLR -/- mice fed a high-cholesterol-high-sucrose diet, supplementation with DHA reaching up to 2% of daily energy intake enhanced the insulin-dependent AKT phosphorylation and reduced the PKC-θ activation in skeletal muscle. Therefore, DHA used at physiological doses participates in the regulation of muscle lipid and glucose metabolisms by preventing lipotoxicity and inflammation.


Asunto(s)
Suplementos Dietéticos , Ácidos Docosahexaenoicos/uso terapéutico , Aceites de Pescado/uso terapéutico , Resistencia a la Insulina , Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Miositis/prevención & control , Absorción Fisiológica , Animales , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/prevención & control , Dieta Occidental/efectos adversos , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/metabolismo , Aceites de Pescado/administración & dosificación , Glucosa/metabolismo , Miembro Posterior , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Ratones , Ratones Noqueados , Músculo Esquelético/enzimología , Músculo Esquelético/inmunología , Miositis/sangre , Miositis/inmunología , Miositis/metabolismo , Fosforilación , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Proteína Quinasa C-theta , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/agonistas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Atún
17.
Nutrients ; 6(12): 5500-16, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25470375

RESUMEN

Although the management of malnutrition is a priority in older people, this population shows a resistance to refeeding. Fresh bee pollen contains nutritional substances of interest for malnourished people. The aim was to evaluate the effect of fresh bee pollen supplementation on refeeding efficiency in old malnourished rats. Male 22-month-old Wistar rats were undernourished by reducing food intake for 12 weeks. The animals were then renourished for three weeks with the same diet supplemented with 0%, 5% or 10% of fresh monofloral bee pollen. Due to changes in both lean mass and fat mass, body weight decreased during malnutrition and increased after refeeding with no between-group differences (p < 0.0001). Rats refed with the fresh bee pollen-enriched diets showed a significant increase in muscle mass compared to restricted rats (p < 0.05). The malnutrition period reduced the muscle protein synthesis rate and mTOR/p70S6kinase/4eBP1 activation, and only the 10%-pollen diet was able to restore these parameters. Mitochondrial activity was depressed with food restriction and was only improved by refeeding with the fresh bee pollen-containing diets. In conclusion, refeeding diets that contain fresh monofloral bee pollen improve muscle mass and metabolism in old, undernourished rats.


Asunto(s)
Abejas , Suplementos Dietéticos , Metabolismo Energético , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Estado Nutricional , Polen , Desnutrición Proteico-Calórica/dietoterapia , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Adiposidad , Factores de Edad , Animales , Proteínas Portadoras/metabolismo , Citocinas/sangre , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular , Masculino , Músculo Esquelético/fisiopatología , Fosfoproteínas/metabolismo , Desnutrición Proteico-Calórica/sangre , Desnutrición Proteico-Calórica/enzimología , Desnutrición Proteico-Calórica/fisiopatología , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Aumento de Peso
18.
Nutrition ; 28(5): 566-71, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22189192

RESUMEN

OBJECTIVE: Energy restriction decreases fat mass and fat-free mass. Our aim was to prevent the latter using type and timing of protein nutrition as tools. METHODS: Young male Wistar rats were given a high-energy diet for 5 wk and then energy restricted and fed a high-protein diet containing caseins, milk-soluble proteins (MSP), or a casein-MSP mixture (n = 9 per group) as the only source of protein for 3 wk. Food intake was spread over 12 h, whereas in a previous experiment rats consumed their daily ration within 2 to 3 h. Weight and food intake were recorded. The body composition was measured by dual-energy x-ray absorptiometry before and after energy restriction. After 3 wk, the hind-limb muscles, the kidney, intestine, liver, and spleen weights, metabolic plasma parameters, and the liver and extensor digitorum longus muscle protein synthesis rates were measured in the postprandial state. RESULTS: The food intake was similar in all groups. Energy restriction induced a significant decrease in body weight and fat mass (P < 0.001) and stopped the slow growth of lean body mass, with no differences between groups. Among all tissues, a significant effect was detected only for the intestine (P = 0.0012), with a higher weight in the casein group. Postprandial liver and muscle protein synthesis rates were not different between groups. CONCLUSION: When using a high-protein diet spread over 12 h, the nature of the protein intake has no influence on the sparing of lean body mass during energy restriction in young overweight rats.


Asunto(s)
Composición Corporal , Proteínas en la Dieta/administración & dosificación , Ingestión de Energía , Leucina/administración & dosificación , Sobrepeso/metabolismo , Absorciometría de Fotón/métodos , Animales , Peso Corporal/efectos de los fármacos , Caseínas/administración & dosificación , Caseínas/metabolismo , Insulina/sangre , Leucina/sangre , Hígado/metabolismo , Masculino , Proteínas Musculares/metabolismo , Periodo Posprandial , Ratas , Ratas Wistar
19.
J Nutr ; 132(1): 95-100, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11773514

RESUMEN

Aging is characterized by a progressive loss of muscle mass. A decrease of muscle protein synthesis stimulation has been detected in the postprandial state and correlated to a decrease of muscle protein synthesis sensitivity to leucine in vitro. This study was undertaken to examine the effect of a leucine-supplemented meal on postprandial (PP) muscle protein synthesis during aging. Adult (8 mo old) and old (22 mo old) rats were fed a semiliquid 18.2% protein control diet for 1 mo. The day of the experiment, rats received no food (postabsorptive group) or either an alanine or leucine-supplemented meal for 1 h (postprandial groups: PP and PP + Leu groups, respectively). Muscle protein synthesis was assessed in vivo 90-120 min after the meal distribution using the flooding dose method (1-(13)C phenylalanine). Plasma leucine concentrations were significantly greater in the PP + Leu group compared with the PP group at both ages. Muscle protein synthesis was significantly greater in the adult PP group, whereas it was not stimulated in the old PP group. When supplemented with leucine, muscle protein synthesis in old rats was stimulated and similar to that observed in adults. We conclude that acute meal supplementation with leucine is sufficient to restore postprandial stimulation of muscle protein synthesis in old rats. Whether chronic leucine meal supplementation may limit muscle protein wasting during aging remains to be verified.


Asunto(s)
Envejecimiento/metabolismo , Leucina/administración & dosificación , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Periodo Posprandial/fisiología , Alanina/administración & dosificación , Aminoácidos/sangre , Animales , Isótopos de Carbono , Insulina/sangre , Leucina/sangre , Leucina/metabolismo , Masculino , Ratas , Ratas Wistar , Factores de Tiempo
20.
J Nutr ; 133(1): 215-9, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12514293

RESUMEN

Aging induces a dysregulation of immune and inflammation functions that may affect protein synthesis rates in lymphoid tissue and plasma proteins. We quantified in vivo synthesis rates of thymus, spleen and plasma proteins, including albumin and acute phase proteins, in adult (8 mo old) and old (22 mo old) rats using the flooding dose method [L-(1-(13)C) phenylalanine]. Immunosenescence was reflected by thymus atrophy and spleen hypertrophy in old rats but not in adult rats. A low albumin plasma level associated with high concentrations of fibrinogen, alpha(2)-macroglobulin, alpha(1)-acid glycoprotein and proteins other than albumin revealed a low grade inflammation in old rats. Protein fractional synthesis rates (FSR) and protein synthesis efficiencies of thymus were 29 and 26% lower in old than in adult rats, respectively; these variables did not differ in spleen. Protein absolute synthesis rates (ASR) of the thymus and spleen were 76% lower and 67% greater in old than adult rats, respectively. The FSR and ASR of albumin and other plasma proteins were greater in old than in adult rats. Protein synthesis measurement is a valuable nonimmunological tool to assess, in vivo, immune and inflammatory variables. Alterations in secondary lymphoid organs and plasma protein synthesis may contribute to the significant repartitioning of amino acids in old compared with adult rats and may be involved in sarcopenia.


Asunto(s)
Proteínas de Fase Aguda/biosíntesis , Envejecimiento/metabolismo , Proteínas Sanguíneas/biosíntesis , Bazo/metabolismo , Timo/metabolismo , Animales , Masculino , Tamaño de los Órganos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA