Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 601(19): 4423-4440, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37589511

RESUMEN

The hypoxic ventilatory response (HVR) is the increase in breathing in response to reduced arterial oxygen pressure. Over several decades, studies have revealed substantial population-level differences in the magnitude of the HVR as well as significant inter-individual variation. In particular, low HVRs occur frequently in Andean high-altitude native populations. However, our group conducted hundreds of HVR measures over several years and commonly observed low responses in sea-level populations as well. As a result, we aimed to determine the normal HVR distribution, whether low responses were common, and to what extent variation in study protocols influence these findings. We conducted a comprehensive search of the literature and examined the distributions of HVR values across 78 studies that utilized step-down/steady-state or progressive hypoxia methods in untreated, healthy human subjects. Several studies included multiple datasets across different populations or experimental conditions. In the final analysis, 72 datasets reported mean HVR values and 60 datasets provided raw HVR datasets. Of the 60 datasets reporting raw HVR values, 35 (58.3%) were at least moderately positively skewed (skew > 0.5), and 21 (35%) were significantly positively skewed (skew > 1), indicating that lower HVR values are common. The skewness of HVR distributions does not appear to be an artifact of methodology or the unit with which the HVR is reported. Further analysis demonstrated that the use of step-down hypoxia versus progressive hypoxia methods did not have a significant impact on average HVR values, but that isocapnic protocols produced higher HVRs than poikilocapnic protocols. This work provides a reference for expected HVR values and illustrates substantial inter-individual variation in this key reflex. Finally, the prevalence of low HVRs in the general population provides insight into our understanding of blunted HVRs in high-altitude adapted groups. KEY POINTS: The hypoxic ventilatory response (HVR) plays a crucial role in determining an individual's predisposition to hypoxia-related pathologies. There is notable variability in HVR sensitivity across individuals as well as significant population-level differences. We report that the normal distribution of the HVR is positively skewed, with a significant prevalence of low HVR values amongst the general healthy population. We also find no significant impact of the experimental protocol used to induce hypoxia, although HVR is greater with isocapnic versus poikilocapnic methods. These results provide insight into the normal distribution of the HVR, which could be useful in clinical decisions of diseases related to hypoxaemia. Additionally, the low HVR values found within the general population provide insight into the genetic adaptations found in populations residing in high altitudes.


Asunto(s)
Altitud , Hipoxia , Humanos , Distribución Normal , Oxígeno , Respiración
2.
Cell ; 133(2): 223-34, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18423195

RESUMEN

Skin plays an essential role, mediated in part by its remarkable vascular plasticity, in adaptation to environmental stimuli. Certain vertebrates, such as amphibians, respond to hypoxia in part through the skin; but it is unknown whether this tissue can influence mammalian systemic adaptation to low oxygen levels. We have found that epidermal deletion of the hypoxia-responsive transcription factor HIF-1alpha inhibits renal erythropoietin (EPO) synthesis in response to hypoxia. Conversely, mice with an epidermal deletion of the von Hippel-Lindau (VHL) factor, a negative regulator of HIF, have increased EPO synthesis and polycythemia. We show that nitric oxide release induced by the HIF pathway acts on cutaneous vascular flow to increase systemic erythropoietin expression. These results demonstrate that in mice the skin is a critical mediator of systemic responses to environmental oxygen.


Asunto(s)
Epidermis/fisiología , Oxígeno/metabolismo , Animales , Análisis Químico de la Sangre , Eritropoyetina/metabolismo , Humanos , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Óxido Nítrico/sangre , Oxígeno/sangre , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
3.
J Physiol ; 598(10): 2021-2034, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32026480

RESUMEN

KEY POINTS: We hypothesized that hypoxia inducible factor 1α (HIF-1α) in CNS respiratory centres is necessary for ventilatory acclimatization to hypoxia (VAH); VAH is a time-dependent increase in baseline ventilation and the hypoxic ventilatory response (HVR) occurring over days to weeks of chronic sustained hypoxia (CH). Constitutive deletion of HIF-1α in CNS neurons in transgenic mice tended to blunt the increase in HVR that occurs in wild-type mice with CH. Conditional deletion of HIF-1α in glutamatergic neurons of the nucleus tractus solitarius during CH significantly decreased ventilation in acute hypoxia but not normoxia in CH mice. These effects are not explained by changes in metabolic rate, nor CO2 , and there were no changes in the HVR in normoxic mice. HIF-1α mediated changes in gene expression in CNS respiratory centres are necessary in addition to plasticity of arterial chemoreceptors for normal VAH. ABSTRACT: Chronic hypoxia (CH) produces a time-dependent increase of resting ventilation and the hypoxic ventilatory response (HVR) that is called ventilatory acclimatization to hypoxia (VAH). VAH involves plasticity in arterial chemoreceptors and the CNS [e.g. nucleus tractus solitarius (NTS)], although the signals for this plasticity are not known. We hypothesized that hypoxia inducible factor 1α (HIF-1α), an O2 -sensitive transcription factor, is necessary in the NTS for normal VAH. We tested this in two mouse models using loxP-Cre gene deletion. First, HIF-1α was constitutively deleted in CNS neurons (CNS-HIF-1α-/- ) by breeding HIF-1α floxed mice with mice expressing Cre-recombinase driven by the calcium/calmodulin-dependent protein kinase IIα promoter. Second, HIF-1α was deleted in NTS neurons in adult mice (NTS-HIF-1α-/- ) by microinjecting adeno-associated virus that expressed Cre-recombinase in HIF-1α floxed mice. In normoxic control mice, HIF-1α deletion in the CNS or NTS did not affect ventilation, nor the acute HVR (10-15 min hypoxic exposure). In mice acclimatized to CH for 1 week, ventilation in hypoxia was blunted in CNS-HIF-1α-/- and significantly decreased in NTS-HIF-1α-/- compared to control mice (P < 0.0001). These changes were not explained by differences in metabolic rate or CO2 . Immunofluorescence showed that HIF-1α deletion in NTS-HIF-1α-/- was restricted to glutamatergic neurons. The results indicate that HIF-1α is a necessary signal for VAH and the previously described plasticity in glutamatergic neurotransmission in the NTS with CH. HIF-1α deletion had no effect on the increase in normoxic ventilation with acclimatization to CH, indicating this is a distinct mechanism from the increased HVR with VAH.


Asunto(s)
Hipoxia , Núcleo Solitario , Aclimatación , Animales , Ratones , Neuronas , Centro Respiratorio
4.
Am J Respir Crit Care Med ; 198(4): 509-520, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29570986

RESUMEN

RATIONALE: Endothelial dysfunction plays an integral role in pulmonary hypertension (PH). AMPK (AMP-activated protein kinase) and ACE2 (angiotensin-converting enzyme 2) are crucial in endothelial homeostasis. The mechanism by which AMPK regulates ACE2 in the pulmonary endothelium and its protective role in PH remain elusive. OBJECTIVES: We investigated the role of AMPK phosphorylation of ACE2 Ser680 in ACE2 stability and deciphered the functional consequences of this post-translational modification of ACE2 in endothelial homeostasis and PH. METHODS: Bioinformatics prediction, kinase assay, and antibody against phospho-ACE2 Ser680 (p-ACE2 S680) were used to investigate AMPK phosphorylation of ACE2 Ser680 in endothelial cells. Using CRISPR-Cas9 genomic editing, we created gain-of-function ACE2 S680D knock-in and loss-of-function ACE2 knockout (ACE2-/-) mouse lines to address the involvement of p-ACE2 S680 and ACE2 in PH. The AMPK-p-ACE2 S680 axis was also validated in lung tissue from humans with idiopathic pulmonary arterial hypertension. MEASUREMENTS AND MAIN RESULTS: Phosphorylation of ACE2 by AMPK enhanced the stability of ACE2, which increased Ang (angiotensin) 1-7 and endothelial nitric oxide synthase-derived NO bioavailability. ACE2 S680D knock-in mice were resistant to PH as compared with wild-type littermates. In contrast, ACE2-knockout mice exacerbated PH, a similar phenotype found in mice with endothelial cell-specific deletion of AMPKα2. Consistently, the concentrations of phosphorylated AMPK, p-ACE2 S680, and ACE2 were decreased in human lungs with idiopathic pulmonary arterial hypertension. CONCLUSIONS: Impaired phosphorylation of ACE2 Ser680 by AMPK in pulmonary endothelium leads to a labile ACE2 and hence is associated with the pathogenesis of PH. Thus, AMPK regulation of the vasoprotective ACE2 is a potential target for PH treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Endotelio Vascular/fisiopatología , Hipertensión Pulmonar/fisiopatología , Peptidil-Dipeptidasa A/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Modelos Animales de Enfermedad , Endotelio Vascular/enzimología , Humanos , Hipertensión Pulmonar/enzimología , Pulmón/enzimología , Pulmón/fisiopatología , Ratones , Ratones Noqueados , Ratas , Ratas Sprague-Dawley
5.
J Neurophysiol ; 120(1): 296-305, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29617218

RESUMEN

In patients with obstructive sleep apnea (OSA), the pharyngeal muscles become relaxed during sleep, which leads to a partial or complete closure of upper airway. Experimental studies suggest that withdrawal of noradrenergic and serotonergic drives importantly contributes to depression of hypoglossal motoneurons and, therefore, may contribute to OSA pathophysiology; however, specific cellular and synaptic mechanisms remain unknown. In this new study, we developed a biophysical network model to test the hypothesis that, to explain experimental observations, the neuronal network for monoaminergic control of excitability of hypoglossal motoneurons needs to include excitatory and inhibitory perihypoglossal interneurons that mediate noradrenergic and serotonergic drives to hypoglossal motoneurons. In the model, the state-dependent activation of the hypoglossal motoneurons was in qualitative agreement with in vivo data during simulated rapid eye movement (REM) and non-REM sleep. The model was applied to test the mechanisms of action of noradrenergic and serotonergic drugs during REM sleep as observed in vivo. We conclude that the proposed minimal neuronal circuit is sufficient to explain in vivo data and supports the hypothesis that perihypoglossal interneurons may mediate state-dependent monoaminergic drive to hypoglossal motoneurons. The population of the hypothesized perihypoglossal interneurons may serve as novel targets for pharmacological treatment of OSA. NEW & NOTEWORTHY In vivo studies suggest that during rapid eye movement sleep, withdrawal of noradrenergic and serotonergic drives critically contributes to depression of hypoglossal motoneurons (HMs), which innervate the tongue muscles. By means of a biophysical model, which is consistent with a broad range of empirical data, we demonstrate that the neuronal network controlling the excitability of HMs needs to include excitatory and inhibitory interneurons that mediate noradrenergic and serotonergic drives to HMs.


Asunto(s)
Tronco Encefálico/fisiopatología , Nervio Hipogloso/fisiopatología , Modelos Neurológicos , Neuronas Motoras/fisiología , Apnea Obstructiva del Sueño/fisiopatología , Adrenérgicos/farmacología , Humanos , Neuronas Motoras/efectos de los fármacos , Serotoninérgicos/farmacología , Sueño REM , Lengua/inervación
6.
J Physiol ; 595(17): 5797-5813, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28688178

RESUMEN

KEY POINTS: Changes in gene expression that occur within hours of exposure to hypoxia in in vivo skeletal muscles remain unexplored. Two hours of hypoxia caused significant down-regulation of extracellular matrix genes followed by a shift at 6 h to altered expression of genes associated with the nuclear lumen while respiratory and blood gases were stabilized. Enrichment analysis of mRNAs classified by stability rates suggests an attenuation of post-transcriptional regulation within hours of hypoxic exposure, where PI3K-Akt signalling was suggested to have a nodal role by pathway analysis. Experimental measurements and bioinformatic analyses suggested that the dephosphorylation of Akt after 2 h of hypoxic exposure might deactivate RNA-binding protein BRF1, hence resulting in the selective degradation of mRNAs. ABSTRACT: The effects of acute hypoxia have been widely studied, but there are few studies of transcriptional responses to hours of hypoxia in vivo, especially in hypoxia-tolerant tissues like skeletal muscles. We used RNA-seq to analyse gene expression in plantaris muscles while monitoring respiration, arterial blood gases, and blood glucose in mice exposed to 8% O2 for 2 or 6 h. Rapid decreases in blood gases and a slower reduction in blood glucose suggest stress, which was accompanied by widespread changes in gene expression. Early down-regulation of genes associated with the extracellular matrix was followed by a shift to genes associated with the nuclear lumen. Most of the early down-regulated genes had mRNA half-lives longer than 2 h, suggesting a role for post-transcriptional regulation. These transcriptional changes were enriched in signalling pathways in which the PI3K-Akt signalling pathway was identified as a hub. Our analyses indicated that gene targets of PI3K-Akt but not HIF were enriched in early transcriptional responses to hypoxia. Among the PI3K-Akt targets, 75% could be explained by a deactivation of adenylate-uridylate-rich element (ARE)-binding protein BRF1, a target of PI3K-Akt. Consistent decreases in the phosphorylation of Akt and BRF1 were experimentally confirmed following 2 h of hypoxia. These results suggest that the PI3K-Akt signalling pathway might play a role in responses induced by acute hypoxia in skeletal muscles, partially through the dephosphorylation of ARE-binding protein BRF1.


Asunto(s)
Hipoxia/genética , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hipoxia/metabolismo , Masculino , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal
7.
J Neurophysiol ; 117(4): 1625-1635, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28100653

RESUMEN

Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, PiO2 = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly (P < 0.001) decreased ventilation during acute hypoxia in CH rats. However, minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia.NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti-inflammatory properties, also blocks astrocyte activation in respiratory centers during chronic hypoxia and ventilatory acclimatization. However, minocycline cannot reverse ventilatory acclimatization after it is established. Hence, glial cells may provide signals that initiate but do not sustain ventilatory acclimatization.


Asunto(s)
Antibacterianos/farmacología , Hipoxia/patología , Minociclina/farmacología , Neuroglía/efectos de los fármacos , Respiración/efectos de los fármacos , Centro Respiratorio/patología , Aclimatación/efectos de los fármacos , Análisis de Varianza , Animales , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Pletismografía , Ratas , Ratas Sprague-Dawley , Núcleo Solitario/citología
8.
Am J Respir Cell Mol Biol ; 53(3): 355-67, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25569851

RESUMEN

Hypoxic pulmonary vasoconstriction (HPV) is an important physiological response that optimizes the ventilation/perfusion ratio. Chronic hypoxia causes vascular remodeling, which is central to the pathogenesis of hypoxia-induced pulmonary hypertension (HPH). We have previously shown that Notch3 is up-regulated in HPH and that activation of Notch signaling enhances store-operated Ca(2+) entry (SOCE), an important mechanism that contributes to pulmonary arterial smooth muscle cell (PASMC) proliferation and contraction. Here, we investigate the role of Notch signaling in HPV and hypoxia-induced enhancement of SOCE. We examined SOCE in human PASMCs exposed to hypoxia and pulmonary arterial pressure in mice using the isolated perfused/ventilated lung method. Wild-type and canonical transient receptor potential (TRPC) 6(-/-) mice were exposed to chronic hypoxia to induce HPH. Inhibition of Notch signaling with a γ-secretase inhibitor attenuates hypoxia-enhanced SOCE in PASMCs and hypoxia-induced increase in pulmonary arterial pressure. Our results demonstrate that hypoxia activates Notch signaling and up-regulates TRPC6 channels. Additionally, treatment with a Notch ligand can mimic hypoxic responses. Finally, inhibition of TRPC6, either pharmacologically or genetically, attenuates HPV, hypoxia-enhanced SOCE, and the development of HPH. These results demonstrate that hypoxia-induced activation of Notch signaling mediates HPV and the development of HPH via functional activation and up-regulation of TRPC6 channels. Understanding the molecular mechanisms that regulate cytosolic free Ca(2+) concentration and PASMC proliferation is critical to elucidation of the pathogenesis of HPH. Targeting Notch regulation of TRPC6 will be beneficial in the development of novel therapies for pulmonary hypertension associated with hypoxia.


Asunto(s)
Señalización del Calcio , Hipertensión Pulmonar/metabolismo , Receptor Notch1/metabolismo , Vasoconstricción , Animales , Proteínas de Unión al Calcio/metabolismo , Hipoxia de la Célula , Células Cultivadas , Humanos , Hipertensión Pulmonar/fisiopatología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Proteínas Serrate-Jagged , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6
9.
Am J Physiol Regul Integr Comp Physiol ; 309(11): R1347-57, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26377557

RESUMEN

An adequate supply of oxygen is important for the survival of all tissues, but it is especially critical for tissues with high-energy demands, such as the heart. Insufficient tissue oxygenation occurs under a variety of conditions, including high altitude, embryonic and fetal development, inflammation, and thrombotic diseases, often affecting multiple organ systems. Responses and adaptations of the heart to hypoxia are of particular relevance in human cardiovascular and pulmonary diseases, in which the effects of hypoxic exposure can range in severity from transient to long-lasting. This study uses the genetic model system Drosophila to investigate cardiac responses to acute (30 min), sustained (18 h), and chronic (3 wk) hypoxia with reoxygenation. Whereas hearts from wild-type flies recovered quickly after acute hypoxia, exposure to sustained or chronic hypoxia significantly compromised heart function upon reoxygenation. Hearts from flies with mutations in sima, the Drosophila homolog of the hypoxia-inducible factor alpha subunit (HIF-α), exhibited exaggerated reductions in cardiac output in response to hypoxia. Heart function in hypoxia-selected flies, selected over many generations for survival in a low-oxygen environment, revealed reduced cardiac output in terms of decreased heart rate and fractional shortening compared with their normoxia controls. Hypoxia-selected flies also had smaller hearts, myofibrillar disorganization, and increased extracellular collagen deposition, consistent with the observed reductions in contractility. This study indicates that longer-duration hypoxic insults exert deleterious effects on heart function that are mediated, in part, by sima and advances Drosophila models for the genetic analysis of cardiac-specific responses to hypoxia and reoxygenation.


Asunto(s)
Drosophila melanogaster/metabolismo , Hemodinámica , Hipoxia/metabolismo , Miocardio/metabolismo , Oxígeno/metabolismo , Adaptación Fisiológica , Animales , Gasto Cardíaco , Colágeno/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Femenino , Fibrosis , Genotipo , Frecuencia Cardíaca , Hipoxia/patología , Hipoxia/fisiopatología , Mutación , Contracción Miocárdica , Miocardio/patología , Fenotipo , Recuperación de la Función , Factores de Tiempo
10.
Am J Physiol Cell Physiol ; 306(9): C871-8, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24573085

RESUMEN

Notch signaling plays a critical role in controlling proliferation and differentiation of pulmonary arterial smooth muscle cells (PASMC). Upregulated Notch ligands and Notch3 receptors in PASMC have been reported to promote the development of pulmonary vascular remodeling in patients with pulmonary arterial hypertension (PAH) and in animals with experimental pulmonary hypertension. Activation of Notch receptors by their ligands leads to the cleavage of the Notch intracellular domain (NICD) to the cytosol by γ-secretase; NICD then translocates into the nucleus to regulate gene transcription. In this study, we examined whether short-term activation of Notch functionally regulates store-operated Ca(2+) entry (SOCE) in human PASMC. Treatment of PASMC with the active fragment of human Jagged-1 protein (Jag-1) for 15-60 min significantly increased the amplitude of SOCE induced by passive deletion of Ca(2+) from the intracellular stores, the sarcoplasmic reticulum (SR). The Jag-1-induced enhancement of SOCE was time dependent: the amplitude was maximized at 30 min of treatment with Jag-1, which was closely correlated with the time course of Jag-1-mediated increase in NICD protein level. The scrambled peptide of Jag-1 active fragment had no effect on SOCE. Inhibition of γ-secretase by N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) significantly attenuated the Jag-1-induced augmentation of SOCE. In addition to the short-term effect, prolonged treatment of PASMC with Jag-1 for 48 h also markedly enhanced the amplitude of SOCE. These data demonstrate that short-term activation of Notch signaling enhances SOCE in PASMC; the NICD-mediated functional interaction with store-operated Ca(2+) channels (SOC) may be involved in the Jag-1-mediated enhancement of SOCE in human PASMC.


Asunto(s)
Agonistas de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/farmacología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Proteínas de la Membrana/farmacología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Receptores Notch/agonistas , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Canales de Calcio/metabolismo , Células Cultivadas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Humanos , Proteína Jagged-1 , Masculino , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Receptores Notch/metabolismo , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Proteínas Serrate-Jagged , Factores de Tiempo
11.
J Physiol ; 592(8): 1839-56, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24492841

RESUMEN

When exposed to a hypoxic environment the body's first response is a reflex increase in ventilation, termed the hypoxic ventilatory response (HVR). With chronic sustained hypoxia (CSH), such as during acclimatization to high altitude, an additional time-dependent increase in ventilation occurs, which increases the HVR. This secondary increase persists after exposure to CSH and involves plasticity within the circuits in the central nervous system that control breathing. Currently these mechanisms of HVR plasticity are unknown and we hypothesized that they involve glutamatergic synapses in the nucleus tractus solitarius (NTS), where afferent endings from arterial chemoreceptors terminate. To test this, we treated rats held in normoxia (CON) or 10% O2 (CSH) for 7 days and measured ventilation in conscious, unrestrained animals before and after microinjecting glutamate receptor agonists and antagonists into the NTS. In normoxia, AMPA increased ventilation 25% and 50% in CON and CSH, respectively, while NMDA doubled ventilation in both groups (P < 0.05). Specific AMPA and NMDA receptor antagonists (NBQX and MK801, respectively) abolished these effects. MK801 significantly decreased the HVR in CON rats, and completely blocked the acute HVR in CSH rats but had no effect on ventilation in normoxia. NBQX decreased ventilation whenever it was increased relative to normoxic controls; i.e. acute hypoxia in CON and CSH, and normoxia in CSH. These results support our hypothesis that glutamate receptors in the NTS contribute to plasticity in the HVR with CSH. The mechanism underlying this synaptic plasticity is probably glutamate receptor modification, as in CSH rats the expression of phosphorylated NR1 and GluR1 proteins in the NTS increased 35% and 70%, respectively, relative to that in CON rats.


Asunto(s)
Aclimatación , Hipoxia/metabolismo , Ventilación Pulmonar , Receptores de Glutamato/metabolismo , Núcleo Solitario/fisiología , Animales , Células Quimiorreceptoras/efectos de los fármacos , Células Quimiorreceptoras/metabolismo , Maleato de Dizocilpina/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Hipoxia/fisiopatología , Masculino , N-Metilaspartato/farmacología , Quinoxalinas/farmacología , Ratas , Ratas Sprague-Dawley , Reflejo , Núcleo Solitario/citología , Núcleo Solitario/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
12.
Front Physiol ; 13: 885295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035495

RESUMEN

The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.

13.
Am J Physiol Regul Integr Comp Physiol ; 301(2): R343-50, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21593425

RESUMEN

During ventilatory acclimatization to hypoxia (VAH), time-dependent increases in ventilation lower Pco(2) levels, and this persists on return to normoxia. We hypothesized that plasticity in the caudal nucleus tractus solitarii (NTS) contributes to VAH, as the NTS receives the first synapse from the carotid body chemoreceptor afferents and also contains CO(2)-sensitive neurons. We lesioned cells in the caudal NTS containing the neurokinin-1 receptor by microinjecting the neurotoxin saporin conjugated to substance P and measured ventilatory responses in awake, unrestrained rats 18 days later. Lesions did not affect hypoxic or hypercapnic ventilatory responses in normoxic control rats, in contrast to published reports for similar lesions in other central chemosensitive areas. Also, lesions did not affect the hypercapnic ventilatory response in chronically hypoxic rats (inspired Po(2) = 90 Torr for 7 days). These results suggest functional differences between central chemoreceptor sites. However, lesions significantly increased ventilation in normoxia or acute hypoxia in chronically hypoxic rats. Hence, chronic hypoxia increases an inhibitory effect of neurokinin-1 receptor neurons in the NTS on ventilatory drive, indicating that these neurons contribute to plasticity during chronic hypoxia, although such plasticity does not explain VAH.


Asunto(s)
Hipoxia/fisiopatología , Fenómenos Fisiológicos Respiratorios/efectos de los fármacos , Proteínas Inactivadoras de Ribosomas Tipo 1/toxicidad , Núcleo Solitario/efectos de los fármacos , Sustancia P/toxicidad , Animales , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Estado de Conciencia , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Oxígeno/metabolismo , Oxígeno/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Neuroquinina-1/metabolismo , Saporinas , Núcleo Solitario/citología
14.
Front Physiol ; 12: 571137, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33737880

RESUMEN

Concern is often voiced over the ongoing loss of atmospheric O2. This loss, which is caused by fossil-fuel burning but also influenced by other processes, is likely to continue at least for the next few centuries. We argue that this loss is quite well understood, and the eventual decrease is bounded by the fossil-fuel resource base. Because the atmospheric O2 reservoir is so large, the predicted relative drop in O2 is very small even for extreme scenarios of future fossil-fuel usage which produce increases in atmospheric CO2 sufficient to cause catastrophic climate changes. At sea level, the ultimate drop in oxygen partial pressure will be less than 2.5 mm Hg out of a baseline of 159 mmHg. The drop by year 2300 is likely to be between 0.5 and 1.3 mmHg. The implications for normal human health is negligible because respiratory O2 consumption in healthy individuals is only weakly dependent on ambient partial pressure, especially at sea level. The impacts on top athlete performance, on disease, on reproduction, and on cognition, will also be very small. For people living at higher elevations, the implications of this loss will be even smaller, because of a counteracting increase in barometric pressure at higher elevations due to global warming.

15.
Front Physiol ; 11: 437, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32435207

RESUMEN

Andean highlanders are challenged by chronic hypoxia and many exhibit elevated hematocrit (Hct) and blunted ventilation compared to other high-altitude populations. While many Andeans develop Chronic Mountain Sickness (CMS) and excessive erythrocytosis, Hct varies markedly within Andean men and women and may be driven by individual differences in ventilatory control and/or sleep events which exacerbate hypoxemia. To test this hypothesis, we quantified relationships between resting ventilation and ventilatory chemoreflexes, sleep desaturation, breathing disturbance, and Hct in Andean men and women. Ventilatory measures were made in 109 individuals (n = 63 men; n = 46 women), and sleep measures in 45 of these participants (n = 22 men; n = 23 women). In both men and women, high Hct was associated with low daytime SpO2 (p < 0.001 and p < 0.002, respectively) and decreased sleep SpO2 (mean, nadir, and time <80%; all p < 0.02). In men, high Hct was also associated with increased end-tidal PCO2 (p < 0.009). While ventilatory responses to hypoxia and hypercapnia did not predict Hct, decreased hypoxic ventilatory responses were associated with lower daytime SpO2 in men (p < 0.01) and women (p < 0.009) and with lower nadir sleep SpO2 in women (p < 0.02). Decreased ventilatory responses to CO2 were associated with more time below 80% SpO2 during sleep in men (p < 0.05). The obstructive apnea index and apnea-hypopnea index also predicted Hct and CMS scores in men after accounting for age, BMI, and SpO2 during sleep. Finally, heart rate response to hypoxia was lower in men with higher Hct (p < 0.0001). These data support the idea that hypoventilation and decreased ventilatory sensitivity to hypoxia are associated with decreased day time and nighttime SpO2 levels that may exacerbate the stimulus for erythropoiesis in Andean men and women. However, interventional and longitudinal studies are required to establish the causal relationships between these associations.

16.
Adv Exp Med Biol ; 648: 369-76, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19536501

RESUMEN

Carotid body arterial chemoreceptors are essential for a normal hypoxic ventilatory response (HVR) and ventilatory acclimatization to hypoxia (VAH). However, recent results show that O(2)-sensing in the brain is involved in these responses also. O(2)-sensing in the rostral ventrolateral medulla, the posterior hypothalamus, the pre-Bötzinger complex and the nucleus tractus solitarius contribute to the acute HVR. Chronic hypoxia causes plasticity in the brain that contributes to VAH and represents another time domain of central O(2)-sensing. The cellular and molecular mechanisms of acute O(2)-sensing in the brain remain to be determined but they appear to involve O(2)-sensitive ion channels and heme oxygenase-2, which acts by a different mechanism than has been described for the carotid body. It is not known if plasticity in such mechanisms of acute central O(2)-sensitivity contributes to VAH. However, O(2)-sensitive changes in gene expression in the brain do contribute to VAH and demonstrate another mechanism of O(2)-sensing that is important for ventilatory control. This time domain of O(2)-sensing in the brain involves gene expression under the control of hypoxia inducible factor-1+/- (HIF-1+/- and potentially several HIF-1+/- targets, such as erythropoietin, endothelin-1, heme oxygenase and tyrosine hydroxylase.


Asunto(s)
Encéfalo/metabolismo , Oxígeno/metabolismo , Animales , Encéfalo/citología , Células Quimiorreceptoras/metabolismo , Hipoxia/metabolismo
17.
PLoS One ; 14(6): e0217089, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31188839

RESUMEN

Impairments in cognitive function, mood, and sleep quality occur following ascent to high altitude. Low oxygen (hypoxia) and poor sleep quality are both linked to impaired cognitive performance, but their independent contributions at high altitude remain unknown. Adaptive servoventilation (ASV) improves sleep quality by stabilizing breathing and preventing central apneas without supplemental oxygen. We compared the efficacy of ASV and supplemental oxygen sleep treatments for improving daytime cognitive function and mood in high-altitude visitors (N = 18) during acclimatization to 3,800 m. Each night, subjects were randomly provided with ASV, supplemental oxygen (SpO2 > 95%), or no treatment. Each morning subjects completed a series of cognitive function tests and questionnaires to assess mood and multiple aspects of cognitive performance. We found that both ASV and supplemental oxygen (O2) improved daytime feelings of confusion (ASV: p < 0.01; O2: p < 0.05) and fatigue (ASV: p < 0.01; O2: p < 0.01) but did not improve other measures of cognitive performance at high altitude. However, performance improved on the trail making tests (TMT) A and B (p < 0.001), the balloon analog risk test (p < 0.0001), and the psychomotor vigilance test (p < 0.01) over the course of three days at altitude after controlling for effects of sleep treatments. Compared to sea level, subjects reported higher levels of confusion (p < 0.01) and performed worse on the TMT A (p < 0.05) and the emotion recognition test (p < 0.05) on nights when they received no treatment at high altitude. These results suggest that stabilizing breathing (ASV) or increasing oxygenation (supplemental oxygen) during sleep can reduce feelings of fatigue and confusion, but that daytime hypoxia may play a larger role in other cognitive impairments reported at high altitude. Furthermore, this study provides evidence that some aspects of cognition (executive control, risk inhibition, sustained attention) improve with acclimatization.


Asunto(s)
Afecto/fisiología , Cognición/fisiología , Soporte Ventilatorio Interactivo/métodos , Oxígeno/administración & dosificación , Apnea Central del Sueño/terapia , Aclimatación , Adulto , Altitud , Femenino , Humanos , Masculino , Polisomnografía , Autoinforme , Apnea Central del Sueño/psicología , Resultado del Tratamiento , Adulto Joven
18.
Respir Physiol Neurobiol ; 164(1-2): 282-7, 2008 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-18708172

RESUMEN

Ventilatory acclimatization to hypoxia (VAH) is a time-dependent increase in ventilation and ventilatory O2-sensitivity that involves plasticity in carotid body chemoreceptors and CNS respiratory centers. Hypoxia inducible factor-1alpha (HIF-1alpha) controls the expression of several genes that increase physiological O2 supply. Studies using transgenic mice show HIF-1alpha expression in the carotid bodies and CNS with chronic sustained and intermittent hypoxia is important for VAH. Other O2-sensitive transcription factors such as HIF-2alpha may be important for VAH by reducing metabolic O2 demands also. Specific gene targets of HIF-1alpha shown to be involved in VAH include erythropoietin, endothelin-1, neuronal nitric oxide synthase and tyrosine hydroxylase. Other HIF-1alpha targets that may be involved in VAH include vascular endothelial growth factor, heme oxygenase 1 and cytoglobin. Interactions between these multiple pathways and feedback control of HIF-1alpha expression from some of the targets support a complex and powerful role for HIF-1alpha in neural plasticity of physiological control circuits with chronic hypoxia.


Asunto(s)
Aclimatación/fisiología , Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Hipoxia/fisiopatología , Ventilación Pulmonar/fisiología , Aclimatación/genética , Animales , Enfermedad Crónica , Humanos , Hipoxia/genética , Factor 1 Inducible por Hipoxia/deficiencia , Ratones
19.
Front Physiol ; 9: 860, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30072908

RESUMEN

Different patterns of hypoxia evoke different forms of plasticity in the neural control of ventilation. For example, acute intermittent hypoxia produces long term facilitation (LTF) of ventilation, while chronic sustained hypoxia (CH) causes ventilatory acclimatization to hypoxia (VAH). In both LTF and VAH, ventilation in normoxia is greater than normal after the hypoxic stimulus is removed and the acute hypoxic ventilatory response can increase. However, the mechanisms of LTF and VAH are thought to be different based on previous results showing serotonin 5HT2 receptors, which are G protein coupled receptors (GPCR) that activate GQ signaling, contribute to LTF but not VAH. Newer results show that a different GPCR, namely adenosine A2A receptors and the GS signaling pathway, cause LTF with more severe intermittent hypoxia, i.e., PaO2 = 25-30 Torr for GS versus 35-45 Torr for LTF with the GQ signaling pathway. We hypothesized adenosine A2A receptors and GS signaling are involved in establishing VAH with longer term moderate CH and tested this in adult male rats by measuring ventilatory responses to O2 and CO2 with barometric pressure plethysmography after administering MSX-3 or ketanserin (A2A and 5HT2 antagonists, respectively, both 1 mg/Kg i.p.) during CH for 7 days. Blocking GS or GQ signals throughout CH exposure, significantly decreased VAH. After VAH was established, GQ blockade did not affect ventilation while GS blockade increased VAH. Similar to LTF, data support roles for both GQ and GS pathways in the development of VAH but after VAH has been established, the GS pathway inhibits VAH.

20.
High Alt Med Biol ; 19(2): 178-184, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29641294

RESUMEN

Orr, Jeremy E., Erica C. Heinrich, Matea Djokic, Dillon Gilbertson, Pamela N. Deyoung, Cecilia Anza-Ramirez, Francisco C. Villafuerte, Frank L. Powell, Atul Malhotra, and Tatum Simonson. Adaptive servoventilation as treatment for central sleep apnea due to high-altitude periodic breathing in nonacclimatized healthy individuals. High Alt Med Biol. 19:178-184, 2018. AIMS: Central sleep apnea (CSA) is common at high altitude, leading to desaturation and sleep disruption. We hypothesized that noninvasive ventilation using adaptive servoventilation (ASV) would be effective at stabilizing CSA at altitude. Supplemental oxygen was evaluated for comparison. METHODS: Healthy subjects were brought from sea level to 3800 m and underwent polysomnography on three consecutive nights. Subjects underwent each condition-No treatment, ASV, and supplemental oxygen-in random order. The primary outcome was the effect of ASV on oxygen desaturation index (ODI). Secondary outcomes included oxygen saturation, arousals, symptoms, and comparison to supplemental oxygen. RESULTS: Eighteen subjects underwent at least two treatment conditions. There was a significant difference in ODI across the three treatments. There was no statistical difference in ODI between no treatment and ASV (17.1 ± 4.2 vs. 10.7 ± 2.9 events/hour; p > 0.17) and no difference in saturation or arousal index. Compared with no treatment, oxygen improved the ODI (16.5 ± 4.5 events/hour vs. 0.5 ± 0.2 events/hour; p < 0.003), in addition to saturation and arousal index. CONCLUSIONS: We found that ASV was not clearly efficacious at controlling CSA in persons traveling to 3800 m, whereas supplemental oxygen resolved CSA. Adjustment in the ASV algorithm may improve efficacy. ASV may have utility in acclimatized persons or at more modest altitudes.


Asunto(s)
Altitud , Soporte Ventilatorio Interactivo/métodos , Respiración Artificial/métodos , Apnea Central del Sueño/terapia , Aclimatación/fisiología , Adulto , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Oximetría , Oxígeno/administración & dosificación , Oxígeno/análisis , Polisomnografía , Respiración , Apnea Central del Sueño/etiología , Apnea Central del Sueño/fisiopatología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA