Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Exp Brain Res ; 231(4): 501-10, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24081681

RESUMEN

Many tasks require synergistic activation of muscles that possess different architectural, mechanical, and neural control properties. However, investigations of the motor unit (MU) mechanisms which modulate force are mostly restricted to individual muscles and low forces. To explore the pattern of MU recruitment and discharge behavior among three elbow extensors (lateral and long heads of the triceps brachii, and anconeus) during ramp isometric contractions, recruitment thresholds of 77 MUs in five young men were determined and corresponding MU discharge rates were tracked in 1-s epochs over forces ranging from 0 to 75 % of maximal voluntary isometric force (MVC). Across all forces, MUs in the lateral head discharged at higher rates than those in the anconeus (p < 0.001, Δ = 0.23). When all MUs were considered, recruitment thresholds in the long head of the triceps brachii were higher than the lateral head (p < 0.05, Δ = 0.70) with a trend (p = 0.08, Δ = 0.48) for higher recruitment thresholds in the long head compared with the anconeus. Together, these data indicate a potential mechanical disadvantage of the long head of the triceps brachii at 0° shoulder flexion. However, among low-threshold MUs (<10 % MVC), recruitment thresholds were lower in the anconeus than in both heads of the triceps brachii consistent with the expected twitch contractile and fiber type differences among these muscles. These findings illustrate the importance of considering synergistic relations among muscles used for a coordinated task, and the sensitivity of synergies to muscle architectural, mechanical, and possibly specific synaptic input factors.


Asunto(s)
Codo/fisiología , Electromiografía/métodos , Músculo Esquelético/fisiología , Fenómenos Fisiológicos Musculoesqueléticos , Reclutamiento Neurofisiológico/fisiología , Adulto , Electromiografía/instrumentación , Humanos , Masculino
2.
Appl Physiol Nutr Metab ; 46(10): 1257-1264, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33930277

RESUMEN

Despite compelling muscular structure and function changes resulting from blood flow restricted (BFR) resistance training, mechanisms of action remain poorly characterized. Alterations in tissue O2 saturation (TSI%) and metabolites are potential drivers of observed changes, but their relationships with degree of occlusion pressure are unclear. We examined local TSI% and blood lactate (BL) concentration during BFR training to failure using different occlusion pressures on strength, hypertrophy, and muscular endurance over an 8-week training period. Twenty participants (11 males/9 females) trained 3/wk for 8 wk using high pressure (100% resting limb occlusion pressure, LOP; 20% one-repetition maximum (1RM)), moderate pressure (50% LOP, 20%1RM), or traditional resistance training (TRT; 70%1RM). Strength, size, and muscular endurance were measured pre/post training. TSI% and BL were quantified during a training session. Despite overall increases, no group preferentially increased strength, hypertrophy, or muscular endurance (p > 0.05). Neither TSI% nor BL concentration differed between groups (p > 0.05). Moderate pressure resulted in greater accumulated deoxygenation stress (TSI% × time) (-6352 ± 3081, -3939 ± 1835, -2532 ± 1349 au for moderate pressure, high pressure, and TRT, p = 0.018). We demonstrate that BFR training to task-failure elicits similar strength, hypertrophy, and muscular endurance changes to TRT. Further, varied occlusion pressure does not impact these outcomes or elicit changes in TSI% or BL concentrations. Novelty: Training to task failure with low-load blood flow restriction elicits similar improvements to traditional resistance training, regardless of occlusion pressure. During blood flow restriction, altering occlusion pressure does not proportionally impact tissue O2 saturation nor blood lactate concentrations.


Asunto(s)
Hipoxia , Ácido Láctico/sangre , Músculo Esquelético/crecimiento & desarrollo , Flujo Sanguíneo Regional , Entrenamiento de Fuerza , Adaptación Fisiológica , Adulto , Constricción , Femenino , Humanos , Masculino , Fuerza Muscular , Músculo Esquelético/irrigación sanguínea , Adulto Joven
3.
J Biomech ; 48(10): 1687-92, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26091619

RESUMEN

The aim of this study was to investigate force depression in Type I and Type II muscle fibers. Experiments were performed using skinned fibers from rabbit soleus and psoas muscles. Force depression was quantified after active fiber shortening from an average sarcomere length (SL) of 3.2µ m to an average SL of 2.6 µm at an absolute speed of 0.115f iber length/s and at a relative speed corresponding to 17% of the unloaded shortening velocity (V0) in each type of fibers. Force decay and mechanical work during shortening were also compared between fiber types. After mechanical testing, each fiber was subjected to myosin heavy chain (MHC) analysis in order to confirm its type (Type I expressing MHC I, and Type II expressing MHC IId). Type II fibers showed greater steady-state force depression after active shortening at a speed of 0.115 fiber length/s than Type I fibers (14.5±1.5% versus 7.8±1.7%). Moreover, at this absolute shortening speed, Type I fibers showed a significantly greater rate of force decay during shortening and produced less mechanical work than Type II fibers. When active shortening was performed at the same relative speed (17% V0), the difference in force depression between fiber types was abolished. These results suggest that no intrinsic differences were at the origin of the disparate force depressions observed in Type I and Type II fibers when actively shortened at the same absolute speed, but rather their distinct force-velocity relationships.


Asunto(s)
Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/fisiología , Animales , Contracción Muscular/fisiología , Cadenas Pesadas de Miosina , Conejos , Sarcómeros/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA