Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 211(4): 648-657, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37405700

RESUMEN

Drugs are needed to protect against the neutrophil-derived histones responsible for endothelial injury in acute inflammatory conditions such as trauma and sepsis. Heparin and other polyanions can neutralize histones but challenges with dosing or side effects such as bleeding limit clinical application. In this study, we demonstrate that suramin, a widely available polyanionic drug, completely neutralizes the toxic effects of individual histones, but not citrullinated histones from neutrophil extracellular traps. The sulfate groups on suramin form stable electrostatic interactions with hydrogen bonds in the histone octamer with a dissociation constant of 250 nM. In cultured endothelial cells (Ea.Hy926), histone-induced thrombin generation was significantly decreased by suramin. In isolated murine blood vessels, suramin abolished aberrant endothelial cell calcium signals and rescued impaired endothelial-dependent vasodilation caused by histones. Suramin significantly decreased pulmonary endothelial cell ICAM-1 expression and neutrophil recruitment caused by infusion of sublethal doses of histones in vivo. Suramin also prevented histone-induced lung endothelial cell cytotoxicity in vitro and lung edema, intra-alveolar hemorrhage, and mortality in mice receiving a lethal dose of histones. Protection of vascular endothelial function from histone-induced damage is a novel mechanism of action for suramin with therapeutic implications for conditions characterized by elevated histone levels.


Asunto(s)
Histonas , Suramina , Ratones , Animales , Histonas/metabolismo , Suramina/farmacología , Células Endoteliales/metabolismo , Endotelio/metabolismo , Hemorragia
2.
J Immunol ; 210(6): 807-819, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36705532

RESUMEN

Thousands of long noncoding RNAs are encoded in mammalian genomes, yet most remain uncharacterized. In this study, we functionally characterized a mouse long noncoding RNA named U90926. Analysis of U90926 RNA levels revealed minimal expression across multiple tissues at steady state. However, the expression of this gene was highly induced in macrophages and dendritic cells by TLR activation, in a p38 MAPK- and MyD88-dependent manner. To study the function of U90926, we generated U90926-deficient (U9-KO) mice. Surprisingly, we found minimal effects of U90926 deficiency in cultured macrophages. Given the lack of macrophage-intrinsic effect, we investigated the subcellular localization of U90926 transcript and its protein-coding potential. We found that U90926 RNA localizes to the cytosol, associates with ribosomes, and contains an open reading frame that encodes a novel glycosylated protein (termed U9-ORF), which is secreted from the cell. An in vivo model of endotoxic shock revealed that, in comparison with wild type mice, U9-KO mice exhibited increased sickness responses and mortality. Mechanistically, serum levels of IL-6 were elevated in U9-KO mice, and IL-6 neutralization improved endotoxemia outcomes in U9-KO mice. Taken together, these results suggest that U90926 expression is protective during endotoxic shock, potentially mediated by the paracrine and/or endocrine actions of the novel U9-ORF protein secreted by activated myeloid cells.


Asunto(s)
ARN Largo no Codificante , Choque Séptico , Ratones , Animales , ARN Largo no Codificante/genética , Interleucina-6 , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Choque Séptico/genética , Choque Séptico/metabolismo , Mamíferos/genética
3.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L71-L82, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37988602

RESUMEN

Obesity is a risk factor for asthma. Individuals with asthma and obesity often have poor asthma control and do not respond as well to therapies such as inhaled corticosteroids and long-acting bronchodilators. Weight loss improves asthma control, with a 5%-10% loss in body mass necessary and sufficient to lead to clinically relevant improvements. Preclinical studies have demonstrated the pathogenic contribution of adipocytes from obese mice to the augmented production of proinflammatory cytokines from airway epithelial cells and the salutary effects of diet-induced weight loss to decrease these consequences. However, the effects of adipocyte-derived products on airway epithelial function in human obesity remain incompletely understood. We utilized samples collected from a 12-mo longitudinal study of subjects with obesity undergoing weight loss (bariatric) surgery including controls without asthma and subjects with allergic and nonallergic obese asthma. Visceral adipose tissue (VAT) samples were collected during bariatric surgery and from recruited normal weight controls without asthma undergoing elective abdominal surgery. Human bronchial epithelial (HBEC3-KT) cells were exposed to plasma or conditioned media from cultured VAT adipocytes with or without agonists. Human bronchial smooth muscle (HBSM) cells were similarly exposed to adipocyte-conditioned media. Proinflammatory cytokines were augmented in supernatants from HBEC3-KT cells exposed to plasma as compared with subsequent visits. Whereas exposure to obese adipocyte-conditioned media induced proinflammatory responses, there were no differences between groups in both HBEC3-KT and HBSM cells. These data show that bariatric surgery and subsequent weight loss beneficially change the circulating factors that augment human airway epithelial and bronchial smooth muscle cell proinflammatory responses.NEW & NOTEWORTHY This longitudinal study following subjects with asthma and obesity reveals that weight loss following bariatric surgery decreases the capacity for plasma to augment proinflammatory cytokine secretion by human bronchial epithelial cells, implicating that circulating but not adipocyte-derived factors are important modulators in obese asthma.


Asunto(s)
Asma , Cirugía Bariátrica , Animales , Ratones , Humanos , Estudios Longitudinales , Medios de Cultivo Condicionados , Obesidad/cirugía , Obesidad/complicaciones , Cirugía Bariátrica/efectos adversos , Bronquios/patología , Citocinas , Células Epiteliales/patología , Pérdida de Peso/fisiología
4.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R370-R382, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38436058

RESUMEN

Obesity is often accompanied by increased adipose tissue inflammation, a process that is partially driven by adipose tissue-resident macrophages. In this study, we explored the potential for plant-derived dietary compounds to exert anti-inflammatory effects in macrophages that alleviate obesity-associated adipocyte dysfunction. Capsaicin (CAP), schisandrin A (SA), enterodiol (END), and enterolactone (ENL) treatment polarized J774 macrophages to an "M2" or anti-inflammatory phenotype and inhibited responses to stimulation with lipopolysaccharide (LPS). Furthermore, these compounds blocked inflammasome activation when administered just before ATP-induced NLRP3 activation, as evidenced by the abrogation of IL-1ß release in mouse macrophages and human peripheral blood monocytes. The addition of CAP, SA, or ENL during the differentiation of bone marrow-derived macrophages was also sufficient to inhibit LPS-induced IL-6 and TNFα production. Finally, CAP, END, and ENL treatment during differentiation of 3T3-L1 adipocytes induced an adiponectin-high phenotype accompanied by increases in thermogenic gene expression, and conditioned media from these adipocytes inhibited LPS-induced production of IL-1ß, IL-6, and TNFα from J774 macrophages. These polarizing effects were partially mediated by the elevated adiponectin and decreased syndecan-4 in the adipocyte-conditioned media. These results implicate the contribution of plant-derived dietary components to the modulation of macrophages and adipocytes in obesity.NEW & NOTEWORTHY The utility of food-based products to prevent or alleviate chronic conditions such as obesity and its associated comorbidities is an attractive approach. Capsaicin, schisandrin A, enterodiol, and enterolactone, phytochemicals present in traditional medicinal food, decreased proinflammatory cytokine production from macrophages that, in turn, reduced obesity-associated adipocyte dysfunction. These results implicate the contribution of plant-derived dietary components to the modulation of macrophages and adipocytes in obesity.


Asunto(s)
4-Butirolactona/análogos & derivados , Capsaicina , Ciclooctanos , Lignanos , Compuestos Policíclicos , Factor de Necrosis Tumoral alfa , Animales , Ratones , Humanos , Capsaicina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Adiponectina , Lipopolisacáridos/toxicidad , Medios de Cultivo Condicionados/metabolismo , Medios de Cultivo Condicionados/farmacología , Obesidad/complicaciones , Obesidad/metabolismo , Inflamación/metabolismo , Antiinflamatorios , Macrófagos/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L228-L242, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36625485

RESUMEN

More than 50% of people with asthma in the United States are obese, and obesity often worsens symptoms of allergic asthma and impairs response to treatment. Based on previously established roles of the epithelial NADPH oxidase DUOX1 in allergic airway inflammation, we addressed the potential involvement of DUOX1 in altered allergic inflammation in the context of obesity. Intranasal house dust mite (HDM) allergen challenge of subjects with allergic asthma induced rapid secretion of IL-33, then IL-13, into the nasal lumen, responses that were significantly enhanced in obese asthmatic subjects (BMI >30). Induction of diet-induced obesity (DIO) in mice by high-fat diet (HFD) feeding similarly enhanced acute airway responses to intranasal HDM challenge, particularly with respect to secretion of IL-33 and type 2/type 3 cytokines, and this was associated with enhanced epithelial DUOX1 expression and was avoided in DUOX1-deficient mice. DIO also enhanced DUOX1-dependent features of chronic HDM-induced allergic inflammation. Although DUOX1 did not affect overall weight gain by HFD feeding, it contributed to glucose intolerance, suggesting a role in glucose metabolism. However, glucose intolerance induced by short-term HFD feeding, in the absence of adiposity, was not sufficient to alter HDM-induced acute airway responses. DIO was associated with enhanced presence of the adipokine leptin in the airways, and leptin enhanced DUOX1-dependent IL-13 and mucin production in airway epithelial cells. In conclusion, augmented inflammatory airway responses to HDM in obesity are associated with increases in airway epithelial DUOX1, and by increased airway epithelial leptin signaling.


Asunto(s)
Asma , Intolerancia a la Glucosa , Animales , Ratones , Alérgenos , Asma/metabolismo , Dieta , Modelos Animales de Enfermedad , Oxidasas Duales , Inflamación , Interleucina-13 , Interleucina-33 , Leptina , Obesidad , Pyroglyphidae
6.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L141-L153, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511516

RESUMEN

Obesity is associated with severe, difficult-to-control asthma, and increased airway oxidative stress. Mitochondrial reactive oxygen species (mROS) are an important source of oxidative stress in asthma, leading us to hypothesize that targeting mROS in obese allergic asthma might be an effective treatment. Using a mouse model of house dust mite (HDM)-induced allergic airway disease in mice fed a low- (LFD) or high-fat diet (HFD), and the mitochondrial antioxidant MitoQuinone (MitoQ), we investigated the effects of obesity and ROS on HDM-induced airway inflammation, remodeling, and airway hyperresponsiveness (AHR). Obese allergic mice showed increased lung tissue eotaxin, airway tissue eosinophilia, and AHR compared with lean allergic mice. MitoQ reduced airway inflammation, remodeling, and hyperreactivity in both lean and obese allergic mice, and tissue eosinophilia in obese-allergic mice. Similar effects were observed with decyl triphosphonium (dTPP+), the hydrophobic cationic moiety of MitoQ lacking ubiquinone. HDM-induced oxidative sulfenylation of proteins was increased particularly in HFD mice. Although only MitoQ reduced sulfenylation of proteins involved in protein folding in the endoplasmic reticulum (ER), ER stress was attenuated by both MitoQ and dTPP+ suggesting the anti-allergic effects of MitoQ are mediated in part by effects of its hydrophobic dTPP+ moiety reducing ER stress. In summary, oxidative signaling is an important mediator of allergic airway disease. MitoQ, likely through reducing protein oxidation and affecting the UPR pathway, might be effective for the treatment of asthma and specific features of obese asthma.


Asunto(s)
Asma , Eosinofilia , Animales , Asma/metabolismo , Pulmón/metabolismo , Obesidad/metabolismo , Inflamación/patología , Pyroglyphidae , Eosinofilia/patología , Modelos Animales de Enfermedad
7.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L243-L257, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34936508

RESUMEN

Obese asthmatics tend to have severe, poorly controlled disease and exhibit methacholine hyperresponsiveness manifesting in proximal airway narrowing and distal lung tissue collapsibility. Substantial weight loss in obese asthmatics or in mouse models of the condition decreases methacholine hyperresponsiveness. Ketone bodies are rapidly elevated during weight loss, coinciding with or preceding relief from asthma-related comorbidities. As ketone bodies may exert numerous potentially therapeutic effects, augmenting their systemic concentrations is being targeted for the treatment of several conditions. Circulating ketone body levels can be increased by feeding a ketogenic diet or by providing a ketone ester dietary supplement, which we hypothesized would exert protective effects in mouse models of inherent obese asthma. Weight loss induced by feeding a low-fat diet to mice previously fed a high-fat diet was preceded by increased urine and blood levels of the ketone body ß-hydroxybutyrate (BHB). Feeding a ketogenic diet for 3 wk to high-fat diet-fed obese mice or genetically obese db/db mice increased BHB concentrations and decreased methacholine hyperresponsiveness without substantially decreasing body weight. Acute ketone ester administration decreased methacholine responsiveness of normal mice, and dietary ketone ester supplementation of high-fat diet-fed mice decreased methacholine hyperresponsiveness. Ketone ester supplementation also transiently induced an "antiobesogenic" gut microbiome with a decreased Fermicutes/Bacteroidetes ratio. Dietary interventions to increase systemic BHB concentrations could provide symptom relief for obese asthmatics without the need for the substantial weight loss required of patients to elicit benefits to their asthma through bariatric surgery or other diet or lifestyle alterations.


Asunto(s)
Asma/fisiopatología , Hiperreactividad Bronquial/fisiopatología , Cetosis/terapia , Obesidad/fisiopatología , Ácido 3-Hidroxibutírico/sangre , Ácido 3-Hidroxibutírico/metabolismo , Animales , Asma/microbiología , Dieta Alta en Grasa , Dieta Cetogénica , Modelos Animales de Enfermedad , Ésteres/administración & dosificación , Microbioma Gastrointestinal , Cuerpos Cetónicos/metabolismo , Masculino , Cloruro de Metacolina , Ratones Endogámicos C57BL , Obesidad/microbiología , Pérdida de Peso
8.
FASEB J ; 35(4): e21462, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33724561

RESUMEN

Muscle may contribute to the systemic inflammatory environment during critical illness, but leukocyte interaction and cytokine influence on muscle and its response has not been fully explored in this context. Using an in vivo model of intratracheal lipopolysaccharide (IT LPS)-induced acute lung injury, we show that skeletal muscle rapidly responds with expression of proinflammatory genes, which may be explained by migration of LPS into the circulation. Treatment of mature C2C12 myotubes with LPS at a level achieved in the circulation following IT LPS elicited a proinflammatory cytokine expression profile similar to that of in vivo murine muscle following IT LPS. Stimulation with toll-like receptor (TLR) 2 and 3 agonists provoked comparable responses in C2C12 myotubes. Additionally, co-cultures of C2C12 myotubes and bone marrow-derived macrophages (BMDM) identified the capacity of macrophages to increase myotube proinflammatory gene expression, with tumor necrosis factor-α (TNFα) gene and protein expression largely attributable to BMDM. To investigate the contribution of TNFα in the synergy of the co-culture environment, C2C12 myotubes were treated with recombinant TNFα, co-cultures were established using TNF-deficient BMDM, and co-cultures were also depleted of TNFα using antibodies. To determine whether the in vitro observations were relevant in vivo, mice received intramuscular administration of LPS ± TNFα or TNFα-neutralizing antibodies and showed that TNFα is both sufficient and necessary to induce synergistic cytokine release from muscle. Taken together, these data demonstrate how skeletal muscle tissue may contribute proinflammatory cytokines following acute endotoxin injury and the potential of leukocytes to augment this response via TNFα secretion.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Animales , Citocinas/metabolismo , Expresión Génica/efectos de los fármacos , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo
9.
J Immunol ; 204(4): 763-774, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31924651

RESUMEN

Asthma is a chronic disorder characterized by inflammation, mucus metaplasia, airway remodeling, and hyperresponsiveness. We recently showed that IL-1-induced glycolytic reprogramming contributes to allergic airway disease using a murine house dust mite model. Moreover, levels of pyruvate kinase M2 (PKM2) were increased in this model as well as in nasal epithelial cells from asthmatics as compared with healthy controls. Although the tetramer form of PKM2 converts phosphoenolpyruvate to pyruvate, the dimeric form of PKM2 has alternative, nonglycolysis functions as a transcriptional coactivator to enhance the transcription of several proinflammatory cytokines. In the current study, we examined the impact of PKM2 on the pathogenesis of house dust mite-induced allergic airways disease in C57BL/6NJ mice. We report, in this study, that activation of PKM2, using the small molecule activator, TEPP46, augmented PKM activity in lung tissues and attenuated airway eosinophils, mucus metaplasia, and subepithelial collagen. TEPP46 attenuated IL-1ß-mediated airway inflammation and expression of proinflammatory mediators. Exposure to TEPP46 strongly decreased the IL-1ß-mediated increases in thymic stromal lymphopoietin (TSLP) and GM-CSF in primary tracheal epithelial cells isolated from C57BL/6NJ mice. We also demonstrate that IL-1ß-mediated increases in nuclear phospho-STAT3 were decreased by TEPP46. Finally, STAT3 inhibition attenuated the IL-1ß-induced release of TSLP and GM-CSF, suggesting that the ability of PKM2 to phosphorylate STAT3 contributes to its proinflammatory function. Collectively, these results demonstrate that the glycolysis-inactive form of PKM2 plays a crucial role in the pathogenesis of allergic airways disease by increasing IL-1ß-induced proinflammatory signaling, in part, through phosphorylation of STAT3.


Asunto(s)
Asma/inmunología , Hipersensibilidad/inmunología , Neumonía/inmunología , Piruvato Quinasa/inmunología , Transducción de Señal/inmunología , Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Animales , Asma/metabolismo , Femenino , Hipersensibilidad/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neumonía/metabolismo , Pyroglyphidae/inmunología , Piruvato Quinasa/metabolismo
10.
Am J Respir Cell Mol Biol ; 64(6): 709-721, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33662229

RESUMEN

Obesity is a risk factor for the development of asthma and represents a difficult-to-treat disease phenotype. Aerobic glycolysis is emerging as a key feature of asthma, and changes in glucose metabolism are linked to leukocyte activation and adaptation to oxidative stress. Dysregulation of PKM2 (pyruvate kinase M2), the enzyme that catalyzes the last step of glycolysis, contributes to house dust mite (HDM)-induced airway inflammation and remodeling in lean mice. It remains unclear whether glycolytic reprogramming and dysregulation of PKM2 also contribute to obese asthma. The goal of the present study was to elucidate the functional role of PKM2 in a murine model of obese allergic asthma. We evaluated the small molecule activator of PKM2, TEPP46, and assessed the role of PKM2 using conditional ablation of the Pkm2 allele from airway epithelial cells. In obese C57BL/6NJ mice, parameters indicative of glycolytic reprogramming remained unchanged in the absence of stimulation with HDM. Obese mice that were subjected to HDM showed evidence of glycolytic reprogramming, and treatment with TEPP46 diminished airway inflammation, whereas parameters of airway remodeling were unaffected. Epithelial ablation of Pkm2 decreased central airway resistance in both lean and obese allergic mice in addition to decreasing inflammatory cytokines in the lung tissue. Lastly, we highlight a novel role for PKM2 in the regulation of glutathione-dependent protein oxidation in the lung tissue of obese allergic mice via a putative IFN-γ-glutaredoxin1 pathway. Overall, targeting metabolism and protein oxidation may be a novel treatment strategy for obese allergic asthma.


Asunto(s)
Asma/enzimología , Asma/patología , Hipersensibilidad/enzimología , Hipersensibilidad/patología , Inflamación/enzimología , Inflamación/patología , Piruvato Quinasa/metabolismo , Animales , Asma/complicaciones , Asma/parasitología , Hiperreactividad Bronquial/complicaciones , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Activación Enzimática/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Glutatión/metabolismo , Glucólisis , Homeostasis/efectos de los fármacos , Hipersensibilidad/complicaciones , Hipersensibilidad/parasitología , Mediadores de Inflamación/metabolismo , Pulmón/enzimología , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Obesos , Modelos Biológicos , Piridazinas/administración & dosificación , Piridazinas/farmacología , Pyroglyphidae , Pirroles/administración & dosificación , Pirroles/farmacología
11.
Am J Physiol Regul Integr Comp Physiol ; 321(1): R79-R90, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34105399

RESUMEN

Although recognized as an important endocrine organ, little is known about the mechanisms through which adipose tissue can regulate inflammatory responses in distant tissues, such as lung that are affected by obesity. To explore potential mechanisms, male C57BL/6J mice were provided either high-fat diet, low-fat diet, or were provided a high-fat diet then switched to the low-fat diet to promote weight loss. Visceral adipocytes were then cultured in vitro to generate conditioned media (CM) that was used to treat both primary (mouse tracheal epithelial cells; MTECs) and immortalized (mouse-transformed club cells; MTCCs) airway epithelial cells. Adiponectin levels were greatly depressed in the CM from both obese and diet-switched adipocytes relative to mice continually fed the low-fat diet. MTECs from mice with obesity secreted higher baseline levels of inflammatory cytokines than MTECs from lean or diet-switched mice. MTECs treated with obese adipocyte CM increased their secretion of these cytokines compared with MTECs treated with lean CM. Diet-switched CM modestly decreased the production of cytokines compared with obese CM, and these effects were recapitulated when the CM was used to treat MTCCs. Adipose stromal vascular cells from mice with obesity expressed genes consistent with an M1 macrophage phenotype and decreased eosinophil abundance compared with lean stromal vascular fraction, a profile that persisted in the lean diet-switched mice despite substantial weight loss. Soluble factors secreted from obese adipocytes exert a proinflammatory effect on airway epithelial cells, and these alterations are attenuated by diet-induced weight loss, which could have implications for the airway dysfunction related to obese asthma and its mitigation by weight loss.


Asunto(s)
Adipocitos/fisiología , Tejido Adiposo/citología , Células Epiteliales/fisiología , Inflamación/complicaciones , Obesidad/inducido químicamente , Animales , Línea Celular , Técnicas de Cocultivo , Dieta Alta en Grasa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Sistema Respiratorio/citología
12.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L693-L709, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783616

RESUMEN

Many mouse models of allergic asthma exhibit eosinophil-predominant cellularity rather than the mixed-granulocytic cytology in steroid-unresponsive severe disease. Therefore, we sought to implement a novel mouse model of antigen-driven, mixed-granulocytic, severe allergic asthma to determine biomarkers of the disease process and potential therapeutic targets. C57BL/6J wild-type, interleukin-6 knockout (IL-6-/-), and IL-6 receptor knockout (IL-6R-/-), mice were injected with an emulsion of complete Freund's adjuvant and house dust mite antigen (CFA/HDM) on day 1. Dexamethasone, a lymphocyte-depleting biological, or anti-IL-17A was administered during the intranasal HDM challenge on days 19-22. On day 23, the CFA/HDM model elicited mixed bronchoalveolar lavage (BAL) cellularity (typically 80% neutrophils and 10% eosinophils), airway hyperresponsiveness (AHR) to methacholine, diffusion impairment, lung damage, body weight loss, corticosteroid resistance, and elevated levels of serum amyloid A (SAA), pro-inflammatory cytokines, and T helper type 1/ T helper type 17 (Th1/Th17) cytokines compared with eosinophilic models of HDM-driven allergic airway disease. BAL cells in IL-6- or IL-6R-deficient mice were predominantly eosinophilic and associated with elevated T helper type 2 (Th2) and reduced Th1/Th17 cytokine production, along with an absence of SAA. Nevertheless, AHR remained in IL-6-deficient mice even when dexamethasone was administered. However, combined administration of anti-IL-17A and systemic corticosteroid significantly attenuated both overall and neutrophilic airway inflammation and also reduced AHR and body weight loss. Inhibition of IL-17A combined with systemic corticosteroid treatment during antigen-driven exacerbations may provide a novel therapeutic approach to prevent the pathological pulmonary and constitutional changes that greatly impact patients with the mixed-granulocytic endotype of severe asthma.


Asunto(s)
Corticoesteroides/farmacología , Asma/tratamiento farmacológico , Neutrófilos/efectos de los fármacos , Células Th17/efectos de los fármacos , Alérgenos/efectos de los fármacos , Alérgenos/inmunología , Animales , Asma/patología , Eosinófilos/efectos de los fármacos , Eosinófilos/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Hipersensibilidad Respiratoria/patología , Células Th17/inmunología
13.
J Immunol ; 201(8): 2377-2384, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30158125

RESUMEN

Studies comparing endogenous and recombinant serum amyloid A (SAA) have generated conflicting data on the proinflammatory function of these proteins. In exploring this discrepancy, we found that in contrast to commercially sourced recombinant human SAA1 (hSAA1) proteins produced in Escherichia coli, hSAA1 produced from eukaryotic cells did not promote proinflammatory cytokine production from human or mouse cells, induce Th17 differentiation, or stimulate TLR2. Proteomic analysis of E. coli-derived hSAA1 revealed the presence of numerous bacterial proteins, with several being reported or probable lipoproteins. Treatment of hSAA1 with lipoprotein lipase or addition of a lipopeptide to eukaryotic cell-derived hSAA1 inhibited or induced the production of TNF-α from macrophages, respectively. Our results suggest that a function of SAA is in the binding of TLR2-stimulating bacterial proteins, including lipoproteins, and demand that future studies of SAA employ a recombinant protein derived from eukaryotic cells.


Asunto(s)
Leucocitos Mononucleares/inmunología , Proteína Amiloide A Sérica/inmunología , Células Th17/inmunología , Receptor Toll-Like 2/agonistas , Adulto , Animales , Diferenciación Celular , Citocinas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Células HEK293 , Humanos , Mediadores de Inflamación/metabolismo , Lipoproteínas/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/genética , Proteína Amiloide A Sérica/genética
14.
Proc Natl Acad Sci U S A ; 114(13): 3491-3496, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28242695

RESUMEN

Males of many species, ranging from humans to insects, are more susceptible than females to parasitic, fungal, bacterial, and viral infections. One mechanism that has been proposed to account for this difference is the immunocompetence handicap model, which posits that the greater infectious disease burden in males is due to testosterone, which drives the development of secondary male sex characteristics at the expense of suppressing immunity. However, emerging data suggest that cell-intrinsic (chromosome X and Y) sex-specific factors also may contribute to the sex differences in infectious disease burden. Using a murine model of influenza A virus (IAV) infection and a panel of chromosome Y (ChrY) consomic strains on the C57BL/6J background, we present data showing that genetic variation in ChrY influences IAV pathogenesis in males. Specific ChrY variants increase susceptibility to IAV in males and augment pathogenic immune responses in the lung, including activation of proinflammatory IL-17-producing γδ T cells, without affecting viral replication. In addition, susceptibility to IAV segregates independent of copy number variation in multicopy ChrY gene families that influence susceptibility to other immunopathological phenotypes, including survival after infection with coxsackievirus B3. These results demonstrate a critical role for genetic variation in ChrY in regulating susceptibility to infectious disease.


Asunto(s)
Virus de la Influenza A/fisiología , Gripe Humana/genética , Cromosoma Y/genética , Animales , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Gripe Humana/inmunología , Gripe Humana/virología , Interleucina-17/genética , Interleucina-17/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Factores Sexuales , Linfocitos T/inmunología , Virulencia
15.
Genes Immun ; 20(4): 261-272, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29880961

RESUMEN

Invariant NKT (iNKT) cells are tissue-resident innate-like T cells critical to the host immune response. We previously identified a 6.6 Mbp region on chromosome 1 as a major regulator of iNKT cell number and function in C57BL/6 and 129X1/SvJ mice. Here, we fine-mapped this locus by assessing the iNKT cell response to alpha-galactosylceramide (αGalCer) in a series of B6.129 congenic lines. This analysis revealed the presence of at least two genetic elements that regulate iNKT cell cytokine production in response to αGalCer. While one of these genetic elements mapped to the B6.129c6 interval containing Slam genes, the dominant regulator in this region mapped to the 0.14 Mbp B6.129c3 interval. In addition, we found that numbers of thymic iNKT cells and DP thymocytes were significantly lower in B6.129c3 mice, indicating that this interval also regulates iNKT cell development. Candidate gene analysis revealed a fivefold increase in Fcgr3 expression in B6.129c3 iNKT cells, and we observed increased expression of FcγR3 protein on B6.129c3 iNKT cells, NK cells, and neutrophils. These data identify the B6.129c3 interval as a novel locus regulating the response of iNKT cells to glycosphingolipid, revealing a link between this phenotype and a polymorphism that regulates Fcgr3 expression.


Asunto(s)
Sitios Genéticos , Inmunidad Innata/genética , Células Asesinas Naturales/inmunología , Receptores de IgG/genética , Animales , Células Cultivadas , Citocinas/metabolismo , Galactosilceramidas/farmacología , Células Asesinas Naturales/citología , Células Asesinas Naturales/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Receptores de IgG/metabolismo
16.
J Allergy Clin Immunol ; 142(2): 435-450.e10, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29108965

RESUMEN

BACKGROUND: Emerging studies suggest that enhanced glycolysis accompanies inflammatory responses. Virtually nothing is known about the relevance of glycolysis in patients with allergic asthma. OBJECTIVES: We sought to determine whether glycolysis is altered in patients with allergic asthma and to address its importance in the pathogenesis of allergic asthma. METHODS: We examined alterations in glycolysis in sputum samples from asthmatic patients and primary human nasal cells and used murine models of allergic asthma, as well as primary mouse tracheal epithelial cells, to evaluate the relevance of glycolysis. RESULTS: In a murine model of allergic asthma, glycolysis was induced in the lungs in an IL-1-dependent manner. Furthermore, administration of IL-1ß into the airways stimulated lactate production and expression of glycolytic enzymes, with notable expression of lactate dehydrogenase A occurring in the airway epithelium. Indeed, exposure of mouse tracheal epithelial cells to IL-1ß or IL-1α resulted in increased glycolytic flux, glucose use, expression of glycolysis genes, and lactate production. Enhanced glycolysis was required for IL-1ß- or IL-1α-mediated proinflammatory responses and the stimulatory effects of IL-1ß on house dust mite (HDM)-induced release of thymic stromal lymphopoietin and GM-CSF from tracheal epithelial cells. Inhibitor of κB kinase ε was downstream of HDM or IL-1ß and required for HDM-induced glycolysis and pathogenesis of allergic airways disease. Small interfering RNA ablation of lactate dehydrogenase A attenuated HDM-induced increases in lactate levels and attenuated HDM-induced disease. Primary nasal epithelial cells from asthmatic patients intrinsically produced more lactate compared with cells from healthy subjects. Lactate content was significantly higher in sputum supernatants from asthmatic patients, notably those with greater than 61% neutrophils. A positive correlation was observed between sputum lactate and IL-1ß levels, and lactate content correlated negatively with lung function. CONCLUSIONS: Collectively, these findings demonstrate that IL-1ß/inhibitory κB kinase ε signaling plays an important role in HDM-induced glycolysis and pathogenesis of allergic airways disease.


Asunto(s)
Asma/metabolismo , Hipersensibilidad/metabolismo , Interleucina-1beta/metabolismo , Pulmón/metabolismo , Nariz/patología , Mucosa Respiratoria/metabolismo , Esputo/metabolismo , Animales , Antígenos Dermatofagoides/inmunología , Células Cultivadas , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Glucólisis , Humanos , Proteínas I-kappa B/metabolismo , Interleucina-1beta/genética , Ácido Láctico/metabolismo , Pulmón/patología , Masculino , Ratones , Persona de Mediana Edad , Neutrófilos/patología , Proteínas Proto-Oncogénicas/metabolismo , Pyroglyphidae , ARN Interferente Pequeño/genética , Mucosa Respiratoria/patología , Transducción de Señal
17.
Respir Res ; 19(1): 98, 2018 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-29792217

RESUMEN

BACKGROUND: Asthma is a chronic respiratory condition, with airway hyperresponsiveness (AHR) and inflammation as hallmarks. The hypothesis that the substantially increased expression of arginase 1 in activated macrophages limits the availability of L-arginine for nitric oxide synthesis, and thus increases AHR in lungs of mice with experimentally induced allergic asthma was recently refuted by several studies. In the present study, we tested the hypothesis that, instead, a low circulating concentration of arginine aggravates AHR in the same murine asthma model. Female FVB F/A2 tg/tg transgenic mice, which overexpress rat arginase 1 in their enterocytes, exhibit a ~ 50% decrease of their plasma L-arginine concentration. METHODS: Adult female F/A2 tg/tg mice and their wild-type littermates (F/A2 wt/wt ) were sensitized and challenged with ovalbumin (OVA/OVA). Lung function was assessed with the flexiVent™ system. Adaptive changes in the expression of arginine-metabolizing or -transporting enzymes, chemokines and cytokines, and lung histology were quantified with qPCR, ELISA, and immunohistochemistry, respectively. RESULTS: Reduction of circulating L-arginine concentration significantly increased AHR in OVA/OVA-treated mice and, to a lesser extent, even in PBS/OVA-treated mice. The pulmonary inflammatory response in OVA/OVA-treated F/A2 tg/tg and F/A2 wt/wt mice was comparable. OVA/OVA-treated F/A2 tg/tg mice differed from similarly treated female mice, in which arginase 1 expression in lung macrophages was eliminated, by a complete absence of an adaptive increase in the expression of arginine-metabolizing or -transporting enzymes. CONCLUSION: A reduction of the circulating L-arginine concentration rather than the macrophage-mediated increase of arginine catabolism worsens AHR.


Asunto(s)
Arginina/sangre , Asma/sangre , Pulmón/metabolismo , Hipersensibilidad Respiratoria/sangre , Animales , Arginasa/biosíntesis , Arginina/deficiencia , Asma/patología , Hiperreactividad Bronquial/sangre , Hiperreactividad Bronquial/patología , Femenino , Pulmón/patología , Ratones , Ratones Transgénicos , Hipersensibilidad Respiratoria/patología
18.
J Immunol ; 197(5): 1720-32, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27465529

RESUMEN

Nitrogen dioxide (NO2) is an environmental air pollutant and endogenously generated oxidant that contributes to the exacerbation of respiratory disease and can function as an adjuvant to allergically sensitize to an innocuous inhaled Ag. Because uric acid has been implicated as a mediator of adjuvant activity, we sought to determine whether uric acid was elevated and participated in a mouse model of NO2-promoted allergic sensitization. We found that uric acid was increased in the airways of mice exposed to NO2 and that administration of uricase inhibited the development of OVA-driven allergic airway disease subsequent to OVA challenge, as well as the generation of OVA-specific Abs. However, uricase was itself immunogenic, inducing a uricase-specific adaptive immune response that occurred even when the enzymatic activity of uricase had been inactivated. Inhibition of the OVA-specific response was not due to the capacity of uricase to inhibit the early steps of OVA uptake or processing and presentation by dendritic cells, but occurred at a later step that blocked OVA-specific CD4(+) T cell proliferation and cytokine production. Although blocking uric acid formation by allopurinol did not affect outcomes, administration of ultra-clean human serum albumin at protein concentrations equivalent to that of uricase inhibited NO2-promoted allergic airway disease. These results indicate that, although uric acid levels are elevated in the airways of NO2-exposed mice, the powerful inhibitory effect of uricase administration on allergic sensitization is mediated more through Ag-specific immune deviation than via suppression of allergic sensitization, a mechanism to be considered in the interpretation of results from other experimental systems.


Asunto(s)
Asma/prevención & control , Hipersensibilidad/inmunología , Dióxido de Nitrógeno/toxicidad , Ovalbúmina/inmunología , Urato Oxidasa/administración & dosificación , Ácido Úrico/metabolismo , Inmunidad Adaptativa , Alérgenos/administración & dosificación , Alopurinol/administración & dosificación , Animales , Presentación de Antígeno , Asma/inducido químicamente , Asma/inmunología , Citocinas/biosíntesis , Citocinas/inmunología , Modelos Animales de Enfermedad , Humanos , Pulmón/química , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/administración & dosificación , Albúmina Sérica/administración & dosificación , Células Th2 , Urato Oxidasa/metabolismo
19.
J Immunol ; 197(4): 1322-34, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27421477

RESUMEN

Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multiprotein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the proinflammatory cytokines IL-1ß and IL-18, can be inhibited by ethanol, and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1ß and caspase-1 cleavage and secretion, as well as diminished apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow-derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of γ-aminobutyric acid A receptor activation or N-methyl-d-asparate receptor inhibition but were associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, whereas administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1ß secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols.


Asunto(s)
Alcoholes/toxicidad , Etanol/toxicidad , Inflamasomas/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Proteínas Tirosina Fosfatasas/efectos de los fármacos , Animales , Western Blotting , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Humanos , Inflamasomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo
20.
Pulm Pharmacol Ther ; 45: 80-89, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28483562

RESUMEN

iNKT cells and mast cells have both been implicated in the syndrome of allergic asthma through their activation-induced release of Th2 type cytokines and secretion of histamine and other mediators, respectively, which can promote airways hyperresponsiveness (AHR) to agents such as methacholine. However, a mechanistic link between iNKT cells and mast cell recruitment or activation has never been explored. Our objective was to determine whether iNKT cells are necessary for the recruitment of mast cells and if iNKT cells can influence the acute allergen induced bronchoconstriction (AIB) caused by mast cell mediator release. To do so, we pharmacologically eliminated iNKT cells using a specific antibody (NKT-14) and examined its impact on airway inflammation and physiological phenotype. In mice treated with NKT-14, the elimination of iNKT cells was sufficient to prevent AHR and pulmonary eosinophilic inflammation elicited by administration of the iNKT cell agonist αGalCer. In mice treated with NKT-14 and then sensitized and challenged with house dust mite extract (HDM), eliminating the iNKT cells significantly reduced both AHR and AIB but did not affect pulmonary inflammation, the mast cell population, nor the release of the mast cell mediators mast cell protease-1 and prostaglandin D2. We conclude that while iNKT cells contribute to the phenotype of allergic airways disease through the manifestation of AIB and AHR, their presence is not required for mast cell recruitment and activation, or to generate the characteristic inflammatory response subsequent to allergen challenge.


Asunto(s)
Broncoconstricción/inmunología , Mastocitos/metabolismo , Células T Asesinas Naturales/metabolismo , Hipersensibilidad Respiratoria/inmunología , Alérgenos/inmunología , Animales , Quimasas/metabolismo , Modelos Animales de Enfermedad , Eosinófilos/metabolismo , Femenino , Hipersensibilidad/inmunología , Inflamación/inmunología , Pulmón/inmunología , Pulmón/patología , Mastocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Células T Asesinas Naturales/inmunología , Fenotipo , Prostaglandina D2/metabolismo , Pyroglyphidae/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA