Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 587(7834): 414-419, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33208962

RESUMEN

Particulate matter is a component of ambient air pollution that has been linked to millions of annual premature deaths globally1-3. Assessments of the chronic and acute effects of particulate matter on human health tend to be based on mass concentration, with particle size and composition also thought to play a part4. Oxidative potential has been suggested to be one of the many possible drivers of the acute health effects of particulate matter, but the link remains uncertain5-8. Studies investigating the particulate-matter components that manifest an oxidative activity have yielded conflicting results7. In consequence, there is still much to be learned about the sources of particulate matter that may control the oxidative potential concentration7. Here we use field observations and air-quality modelling to quantify the major primary and secondary sources of particulate matter and of oxidative potential in Europe. We find that secondary inorganic components, crustal material and secondary biogenic organic aerosols control the mass concentration of particulate matter. By contrast, oxidative potential concentration is associated mostly with anthropogenic sources, in particular with fine-mode secondary organic aerosols largely from residential biomass burning and coarse-mode metals from vehicular non-exhaust emissions. Our results suggest that mitigation strategies aimed at reducing the mass concentrations of particulate matter alone may not reduce the oxidative potential concentration. If the oxidative potential can be linked to major health impacts, it may be more effective to control specific sources of particulate matter rather than overall particulate mass.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Contaminación del Aire/análisis , Material Particulado/análisis , Material Particulado/química , Bronquios/citología , Células Cultivadas , Ciudades , Células Epiteliales , Europa (Continente) , Humanos , Modelos Teóricos , Oxidación-Reducción , Población Rural , Población Urbana
2.
Environ Sci Technol ; 58(20): 8857-8866, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38718183

RESUMEN

Comprehensive identification of aerosol sources and their constituent organic compounds requires aerosol-phase molecular-level characterization with a high time resolution. While real-time chemical characterization of aerosols is becoming increasingly common, information about functionalization and structure is typically obtained from offline methods. This study presents a method for determining the presence of carboxylic acid functional groups in real time using extractive electrospray ionization mass spectrometry based on measurements of [M - H + 2Na]+ adducts. The method is validated and characterized using standard compounds. A proof-of-concept application to α-pinene secondary organic aerosol (SOA) shows the ability to identify carboxylic acids even in complex mixtures. The real-time capability of the method allows for the observation of the production of carboxylic acids, likely formed in the particle phase on short time scales (<120 min). Our research explains previous findings of carboxylic acids being a significant component of SOA and a quick decrease in peroxide functionalization following SOA formation. We show that the formation of these acids is commensurate with the increase of dimers in the particle phase. Our results imply that SOA is in constant evolution through condensed-phase processes, which lower the volatility of the aerosol components and increase the available condensed mass for SOA growth and, therefore, aerosol mass loading in the atmosphere. Further work could aim to quantify the effect of particle-phase acid formation on the aerosol volatility distributions.


Asunto(s)
Aerosoles , Ácidos Carboxílicos , Espectrometría de Masa por Ionización de Electrospray
3.
Anal Chem ; 95(37): 13788-13795, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37656668

RESUMEN

The quantification of an aerosol chemical composition is complicated by the uncertainty in the sensitivity of each species detected. Soft-ionization response factors can vary widely from molecule to molecule. Here, we have employed a method to separate molecules by their volatility through systematic evaporation with a thermal denuder (TD). The fraction remaining after evaporation is compared between an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF) and a scanning mobility particle sizer (SMPS), which provides a comparison between a quantified mass loss by the SMPS and the signal loss in the EESI-TOF. The sensitivity of the EESI-TOF is determined for both a simplified complex mixture (PEG-300) and also for a complex mixture of α-pinene secondary organic aerosol (SOA). For PEG-300, separation is possible on a molecule-by-molecule level with the TD and provides insights into the molecule-dependent sensitivity of the EESI-TOF, showing a higher sensitivity toward the most volatile molecule. For α-pinene SOA, sensitivity determination for specific classes is possible because of the number of molecular formula observed by the EESI-TOF. These classes are separated by their volatility and are broken down into monomers (O3-5,6-7,8+), dimers (O4-7,8+), and higher order oligomers (e.g., trimers and tetramers). Here, we show that the EESI-TOF initially measures 60.1% monomers, 32.7% dimers, and 7.2% trimers and tetramers in α-pinene SOA, but after sensitivity correction, the distribution of SOA is 37.4% monomers, 56.1% dimers, and 6.4% trimers and tetramers. These results provide a path forward for the quantification of aerosol components with the EESI-TOF in other applications and potentially for atmospheric measurements.

4.
Environ Sci Technol ; 57(31): 11572-11582, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37496264

RESUMEN

Aromatic hydrocarbons (ArHCs) and oxygenated aromatic hydrocarbons (ArHC-OHs) are emitted from a variety of anthropogenic activities and are important precursors of secondary organic aerosol (SOA) in urban areas. Here, we analyzed and compared the composition of SOA formed from the oxidation of a mixture of aromatic VOCs by OH and NO3 radicals. The VOC mixture was composed of toluene (C7H8), p-xylene + ethylbenzene (C8H10), 1,3,5-trimethylbenzene (C9H12), phenol (C6H6O), cresol (C7H8O), 2,6-dimethylphenol (C8H10O), and 2,4,6-trimethylphenol (C9H12O) in a proportion where the aromatic VOCs were chosen to approximate day-time traffic-related emissions in Delhi, and the aromatic alcohols make up 20% of the mixture. These VOCs are prominent in other cities as well, including those influenced by biomass combustion. In the NO3 experiments, large contributions from CxHyOzN dimers (C15-C18) were observed, corresponding to fast SOA formation within 15-20 min after the start of chemistry. Additionally, the dimers were a mixture of different combinations of the initial VOCs, highlighting the importance of exploring SOAs from mixed VOC systems. In contrast, the experiments with OH radicals yielded gradual SOA mass formation, with CxHyOz monomers (C6-C9) being the dominant constituents. The evolution of SOA composition with time was tracked and a fast degradation of dimers was observed in the NO3 experiments, with concurrent formation of monomer species. The rates of dimer decomposition in NO3 SOA were ∼2-3 times higher compared to those previously determined for α-pinene + O3 SOA, highlighting the dependence of particle-phase reactions on VOC precursors and oxidants. In contrast, the SOA produced in the OH experiments did not dramatically change over the same time frame. No measurable effects of humidity were observed on the composition and evolution of SOA.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Aromáticos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Compuestos Orgánicos Volátiles/química , Aerosoles/análisis , Tolueno
5.
Environ Sci Technol ; 56(22): 15389-15397, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36306277

RESUMEN

The first excited state of molecular oxygen is singlet-state oxygen (1O2), formed by indirect photochemistry of chromophoric organic matter. To determine whether 1O2 can be a competitive atmospheric oxidant, we must first quantify its production in organic aerosols (OA). Here, we report the spatiotemporal distribution of 1O2 over a 1-year dataset of PM10 extracts at two locations in Switzerland, representing a rural and suburban site. Using a chemical probe technique, we measured 1O2 steady-state concentrations with a seasonality over an order of magnitude peaking in wintertime at 4.59 ± 0.01 × 10-13 M and with a quantum yield of up to 2%. Next, we identified biomass burning and anthropogenic secondary OA (SOA) as the drivers for 1O2 formation in the PM10 aqueous extracts using source apportionment data. Importantly, the quantity, the amount of brown carbon present in PM10, and the quality, the chemical composition of the brown carbon present, influence the concentration of 1O2 sensitized in each extract. Anthropogenic SOA in the extracts were 4 times more efficient in sensitizing 1O2 than primary biomass burning aerosols. Last, we developed an empirical fit to estimate 1O2 concentrations based on PM10 components, unlocking the ability to estimate 1O2 from existing source apportionment data. Overall, 1O2 is likely a competitive photo-oxidant in PM10 since 1O2 is sensitized by ubiquitous biomass burning OA and anthropogenic SOA.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Oxígeno Singlete , Biomasa , Aerosoles/química , Agua , Carbono , Oxígeno , Oxidantes , Monitoreo del Ambiente
6.
Environ Sci Technol ; 56(22): 15290-15297, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36318938

RESUMEN

97% of the urban population in the EU in 2019 were exposed to an annual fine particulate matter level higher than the World Health Organization (WHO) guidelines (5 µg/m3). Organic aerosol (OA) is one of the major air pollutants, and the knowledge of its sources is crucial for designing cost-effective mitigation strategies. Positive matrix factorization (PMF) on aerosol mass spectrometer (AMS) or aerosol chemical speciation monitor (ACSM) data is the most common method for source apportionment (SA) analysis on ambient OA. However, conventional PMF requires extensive human labor, preventing the implementation of SA for routine monitoring applications. This study proposes the source finder real-time (SoFi RT, Datalystica Ltd.) approach for efficient retrieval of OA sources. The results generated by SoFi RT agree remarkably well with the conventional rolling PMF results regarding factor profiles, time series, diurnal patterns, and yearly relative contributions of OA factor on three year-long ACSM data sets collected in Athens, Paris, and Zurich. Although the initialization of SoFi RT requires a priori knowledge of OA sources (i.e., the approximate number of factors and relevant factor profiles) for the sampling site, this technique minimizes user interactions. Eventually, it could provide up-to-date trustable information on timescales useful to policymakers and air quality modelers.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Ciudades , Monitoreo del Ambiente/métodos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Contaminación del Aire/prevención & control , Contaminación del Aire/análisis
7.
Environ Sci Technol ; 56(11): 7052-7062, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35234030

RESUMEN

The Sarajevo Canton Winter Field Campaign 2018 (SAFICA) was a project that took place in winter 2017-2018 with an aim to characterize the chemical composition of aerosol in the Sarajevo Canton, Bosnia and Herzegovina (BiH), which has one of the worst air qualities in Europe. This paper presents the first characterization of the metals in PM10 (particulate matter aerodynamic diameters ≤10 µm) from continuous filter samples collected during an extended two-months winter period at the urban background Sarajevo and remote Ivan Sedlo sites. We report the results of 18 metals detected by inductively coupled plasma mass spectrometry (ICP-MS) and electrothermal atomic absorption spectrometry (ETAAS). The average mass concentrations of metals were higher at the Sarajevo site than at Ivan Sedlo and ranged from 0.050 ng/m3 (Co) to 188 ng/m3 (Fe) and from 0.021 ng/m3 (Co) to 61.8 ng/m3 (Fe), respectively. The BenMAP-CE model was used for estimating the annual BiH health (50% decrease in PM2.5 would save 4760+ lives) and economic benefits (costs of $2.29B) of improving the air quality. Additionally, the integrated energy and health assessment with the ExternE model provided an initial estimate of the additional health cost of BiH's energy system.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Bosnia y Herzegovina , Polvo/análisis , Monitoreo del Ambiente/métodos , Metales/análisis , Material Particulado/análisis , Estaciones del Año
8.
Faraday Discuss ; 226: 290-313, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33241811

RESUMEN

This study aims to critically evaluate the source apportionment of fine particles by multiple receptor modelling approaches, including carbon mass balance modelling of filter-based radiocarbon (14C) data, Chemical Mass Balance (CMB) and Positive Matrix Factorization (PMF) analysis on filter-based chemical speciation data, and PMF analysis on Aerosol Mass Spectrometer (AMS-PMF) or Aerosol Chemical Speciation Monitor (ACSM-PMF) data. These data were collected as part of the APHH-Beijing (Atmospheric Pollution and Human Health in a Chinese Megacity) field observation campaigns from 10th November to 12th December in winter 2016 and from 22nd May to 24th June in summer 2017. 14C analysis revealed the predominant contribution of fossil fuel combustion to carbonaceous aerosols in winter compared with non-fossil fuel sources, which is supported by the results from other methods. An extended Gelencsér (EG) method incorporating 14C data, as well as the CMB and AMS/ACSM-PMF methods, generated a consistent source apportionment for fossil fuel related primary organic carbon. Coal combustion, traffic and biomass burning POC were comparable for CMB and AMS/ACSM-PMF. There are uncertainties in the EG method when estimating biomass burning and cooking OC. The POC from cooking estimated by different methods was poorly correlated, suggesting a large uncertainty when differentiating this source type. The PM2.5 source apportionment results varied between different methods. Through a comparison and correlation analysis of CMB, PMF and AMS/ACSM-PMF, the CMB method appears to give the most complete and representative source apportionment of Beijing aerosols. Based upon the CMB results, fine aerosols in Beijing were mainly secondary inorganic ion formation, secondary organic aerosol formation, primary coal combustion and from biomass burning emissions.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Beijing , Monitoreo del Ambiente , Humanos , Material Particulado/análisis
9.
Environ Sci Technol ; 55(8): 4332-4343, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33720711

RESUMEN

Despite decades of declining air pollution, urban U.S. areas are still affected by summertime ozone and wintertime particulate matter exceedance events. Volatile organic compounds (VOCs) are known precursors of secondary organic aerosol (SOA) and photochemically produced ozone. Urban VOC emission sources, including on-road transportation emissions, have decreased significantly over the past few decades through successful regulatory measures. These drastic reductions in VOC emissions have led to a change in the distribution of urban emissions and noncombustion sources of VOCs such as those from volatile chemical products (VCPs), which now account for a higher fraction of the urban VOC burden. Given this shift in emission sources, it is essential to quantify the relative contribution of VCP and mobile source emissions to urban pollution. Herein, ground site and mobile laboratory measurements of VOCs were performed. Two ground site locations with different population densities, Boulder, CO, and New York City (NYC), NY, were chosen in order to evaluate the influence of VCPs in cities with varying mixtures of VCPs and mobile source emissions. Positive matrix factorization was used to attribute hundreds of compounds to mobile- and VCP-dominated sources. VCP-dominated emissions contributed to 42 and 78% of anthropogenic VOC emissions for Boulder and NYC, respectively, while mobile source emissions contributed 58 and 22%. Apportioned VOC emissions were compared to those estimated from the Fuel-based Inventory of Vehicle Emissions and VCPs and agreed to within 25% for the bulk comparison and within 30% for more than half of individual compounds. The evaluated inventory was extended to other U.S. cities and it suggests that 50 to 80% of emissions, reactivity, and the SOA-forming potential of urban anthropogenic VOCs are associated with VCP-dominated sources, demonstrating their important role in urban U.S. air quality.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Ciudades , Monitoreo del Ambiente , Ciudad de Nueva York , Ozono/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis
10.
Environ Sci Technol ; 55(10): 6936-6943, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33961408

RESUMEN

Atmospheric secondary organic aerosol (SOA) undergoes chemical and physical changes when exposed to UV radiation, affecting the atmospheric lifetime of the involved molecules. However, these photolytic processes remain poorly constrained. Here, we present a study aimed at characterizing, at a molecular level and in real time, the chemical composition of α-pinene SOA exposed to UV-A light at 50% relative humidity in an atmospheric simulation chamber. Significant SOA mass loss is observed at high loadings (∼100 µg m-3), whereas the effect is less prevalent at lower loadings (∼20 µg m-3). For the vast majority of molecules measured by the extractive electrospray time-of-flight mass spectrometer, there is a fraction that is photoactive and decays when exposed to UV-A radiation and a fraction that appears photorecalcitrant. The molecules that are most photoactive contain between 4 and 6 oxygen atoms, while the more highly oxygenated compounds and dimers do not exhibit significant decay. Overall, photolysis results in a reduction of the volatility of SOA, which cannot be explained by simple evaporative losses but requires either a change in volatility related to changes in functional groups or a change in physical parameters (i.e., viscosity).


Asunto(s)
Contaminantes Atmosféricos , Aerosoles , Monoterpenos Bicíclicos , Monoterpenos , Fotólisis
11.
Environ Sci Technol ; 55(9): 5701-5710, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33826309

RESUMEN

Smog chamber experiments were conducted to characterize the light absorption of brown carbon (BrC) from primary and photochemically aged coal combustion emissions. Light absorption was measured by the UV-visible spectrophotometric analysis of water and methanol extracts of filter samples. The single-scattering albedo at 450 nm was 0.73 ± 0.10 for primary emissions and 0.75 ± 0.13 for aged emissions. The light absorption coefficient at 365 nm of methanol extracts was higher than that of water extracts by a factor of 10 for primary emissions and a factor of 7 for aged emissions. This suggests that the majority of BrC is water-insoluble even after aging. The mass absorption efficiency of this BrC (MAE365) for primary OA (POA) was dependent on combustion conditions, with an average of 0.84 ± 0.54 m2 g-1, which was significantly higher than that for aged OA (0.24 ± 0.18 m2 g-1). Secondary OA (SOA) dominated aged OA and the decreased MAE365 after aging indicates that SOA is less light absorbing than POA and/or that BrC is bleached (oxidized) with aging. The estimated MAE365 of SOA (0.14 ± 0.08 m2 g-1) was much lower than that of POA. A comparison of MAE365 of residential coal combustion with other anthropogenic sources suggests that residential coal combustion emissions are among the strongest absorbing BrC organics.


Asunto(s)
Contaminantes Atmosféricos , Carbono , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , Carbón Mineral , Material Particulado/análisis , Agua
12.
Environ Sci Technol ; 55(17): 11557-11567, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34431667

RESUMEN

The lockdown due to COVID-19 created a rare opportunity to examine the nonlinear responses of secondary aerosols, which are formed through atmospheric oxidation of gaseous precursors, to intensive precursor emission reductions. Based on unique observational data sets from six supersites in eastern China during 2019-2021, we found that the lockdown caused considerable decreases (32-61%) in different secondary aerosol components in the study region because of similar-degree precursor reductions. However, due to insufficient combustion-related volatile organic compound (VOC) reduction, odd oxygen (Ox = O3 + NO2) concentration, an indicator of the extent of photochemical processing, showed little change and did not promote more decreases in secondary aerosols. We also found that the Chinese provinces and international cities that experienced reduced Ox during the lockdown usually gained a greater simultaneous PM2.5 decrease than other provinces and cities with an increased Ox. Therefore, we argue that strict VOC control in winter, which has been largely ignored so far, is critical in future policies to mitigate winter haze more efficiently by reducing Ox simultaneously.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , China , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Oxígeno , Material Particulado/análisis , SARS-CoV-2
13.
Environ Sci Technol ; 54(7): 3871-3880, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32146813

RESUMEN

Current mass spectrometry techniques for the online measurement of organic aerosol (OA) composition are subjected to either thermal/ionization-induced artifacts or limited mass resolving power, hindering accurate molecular characterization. Here, we combined the soft ionization capability of extractive electrospray ionization (EESI) and the ultrahigh mass resolution of Orbitrap for real-time, near-molecular characterization of OAs. Detection limits as low as tens of ng m-3 with linearity up to hundreds of µg m-3 at 0.2 Hz time resolution were observed for single- and mixed-component calibrations. The performance of the EESI-Orbitrap system was further evaluated with laboratory-generated secondary OAs (SOAs) and filter extracts of ambient particulate matter. The high mass accuracy and resolution (140 000 at m/z 200) of the EESI-Orbitrap system enable unambiguous identification of the aerosol components' molecular composition and allow a clear separation between adjacent peaks, which would be significantly overlapping if a medium-resolution (20 000) mass analyzer was used. Furthermore, the tandem mass spectrometry (MS2) capability provides valuable insights into the compound structure. For instance, the MS2 analysis of ambient OA samples and lab-generated biogenic SOAs points to specific SOA precursors in ambient air among a range of possible isomers based on fingerprint fragment ions. Overall, this newly developed and characterized EESI-Orbitrap system will advance our understanding of the formation and evolution of atmospheric aerosols.


Asunto(s)
Material Particulado , Espectrometría de Masa por Ionización de Electrospray , Aerosoles , Límite de Detección , Espectrometría de Masas en Tándem
14.
Nature ; 514(7521): 218-22, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25231863

RESUMEN

Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Contaminación del Aire/análisis , Material Particulado/análisis , Material Particulado/química , Aerosoles/química , Biomasa , China , Ciudades , Monitoreo del Ambiente , Combustibles Fósiles , Humanos , Compuestos Orgánicos/análisis , Compuestos Orgánicos/química , Salud Pública , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
15.
J Environ Sci (China) ; 95: 99-110, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32653198

RESUMEN

PM2.5 filter sampling and components measurement were conducted in autumn and winter from 2014 to 2015 at a suburban site (referred herein as "LLH site") located in the southwest of Beijing. The offline aerosol mass spectrometry (offline-AMS) analysis and positive matrix factorization (PMF) were applied for measurement and source apportionment of water-soluble organic aerosol (WSOA). Organic aerosol (OA) always dominated PM2.5 during the sampling period, especially in winter. WSOA pollution was serious during the polluted period both in autumn (31.1 µg/m3) and winter (31.9 µg/m3), while WSOA accounted for 54.4% of OA during the polluted period in autumn, much more than that (21.3%) in winter. The oxidation degree of WSOA at LLH site was at a high level (oxygen-to-carbon ratio, O/C=0.91) and secondary organic aerosol (SOA) contributed more mass ratio of WSOA than primary organic aerosol (POA) during the whole observation period. In winter, coal combustion OA (CCOA) was a stable source of OA and on average accounted for 25.1% of WSOA. In autumn, biomass burning OA (BBOA) from household combustion contributed 38.3% of WSOA during polluted period. In addition to oxygenated OA (OOA), aqueous-oxygenated OA (aq-OOA) was identified as an important factor of SOA. During heavy pollution period, the mass proportion of aq-OOA to WSOA increased significantly, implying the significant SOA formation through aqueous-phase process. The result of this study highlights the concentration on controlling the residential coal and biomass burning, as well as the research needs on aqueous chemistry in OA formation.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aerosoles/análisis , Beijing , Monitoreo del Ambiente , Material Particulado/análisis , Agua/análisis
16.
Indoor Air ; 29(6): 926-942, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31449696

RESUMEN

Cooking is recognized as an important source of particulate pollution in indoor and outdoor environments. We conducted more than 100 individual experiments to characterize the particulate and non-methane organic gas emissions from various cooking processes, their reaction rates, and their secondary organic aerosol yields. We used this emission data to develop a box model, for simulating the cooking emission concentrations in a typical European home and the indoor gas-phase reactions leading to secondary organic aerosol production. Our results suggest that about half of the indoor primary organic aerosol emission rates can be explained by cooking. Emission rates of larger and unsaturated aldehydes likely are dominated by cooking while the emission rates of terpenes are negligible. We found that cooking dominates the particulate and gas-phase air pollution in non-smoking European households exceeding 1000 µg m-3 . While frying processes are the main driver of aldehyde emissions, terpenes are mostly emitted due to the use of condiments. The secondary aerosol production is negligible with around 2 µg m-3 . Our results further show that ambient cooking organic aerosol concentrations can only be explained by super-polluters like restaurants. The model offers a comprehensive framework for identifying the main parameters controlling indoor gas- and particle-phase concentrations.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Culinaria/métodos , Compuestos Orgánicos Volátiles/análisis , Aldehídos/análisis , Monitoreo del Ambiente , Humanos , Restaurantes , Terpenos/análisis
17.
Environ Sci Technol ; 52(22): 13381-13390, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30351026

RESUMEN

Log wood burning is a significant source of volatile organic compounds including aromatic hydrocarbons (ArHC). ArHC are harmful, are reactive in the ambient atmosphere, and are important secondary organic aerosol (SOA) precursors. Consequently, SOA represents a major fraction of the sub-micron organic aerosol pollution from log wood burning. ArHC reduction is thus critical in the mitigation of adverse health and environmental effects of log wood burning. In this study, two Pt-based catalytic converters were prepared and tested for the mitigation of real-world log wood burning emissions, including ArHC and SOA formation, as well as toxic carbon monoxide and methane, a greenhouse gas. Substantial removal of mono- and polycyclic ArHC and phenolic compounds was achieved with both catalysts operated at realistic chimney temperatures (50% conversion was achieved at 200 and 300 °C for non-methane hydrocarbons in our experiments for Pt/Al2O3 and Pt/CeO2-Al2O3, respectively). The catalytically cleaned emissions exhibited a substantially reduced SOA formation already at temperatures as low as 185-310 °C. This reduces the sub-micron PM burden of log wood burning significantly. Thus, catalytic converters can effectively reduce primary and secondary log wood burning pollutants and, thereby, their adverse health impacts and environmental effects.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Aromáticos , Aerosoles , Material Particulado , Madera
18.
Environ Sci Technol ; 52(19): 10967-10974, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30185022

RESUMEN

Source apportionment studies of particulate matter (PM) link chemical composition to emission sources, while health risk analyses link health outcomes and chemical composition. There are limited studies to link emission sources and health risks from ambient measurements. We show such an attempt for particulate trace elements. Elements in PM2.5 were measured in wintertime Beijing, and the total concentrations of 14 trace elements were 1.3-7.3 times higher during severe pollution days than during low pollution days. Fe, Zn, and Pb were the most abundant elements independent of the PM pollution levels. Chemical fractionation shows that Pb, Mn, Cd, As, Sr, Co, V, Cu, and Ni were present mainly in the bioavailable fraction. Positive matrix factorization was used to resolve the sources of particulate trace elements into dust, oil combustion, coal combustion, and traffic-related emissions. Traffic-related emission contributed 65% of total mass of the measured elements during low pollution days. However, coal combustion dominated (58%) during severe pollution days. By combining element-specific health risk analyses and source apportionment results, we conclude that traffic-related emission dominates the health risks by particulate trace elements during low pollution days, while coal combustion becomes equally or even more important during moderate and severe pollution days.


Asunto(s)
Contaminantes Atmosféricos , Oligoelementos , Beijing , Carbón Mineral , Polvo , Monitoreo del Ambiente , Material Particulado
19.
Environ Sci Technol ; 52(5): 2612-2617, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29436222

RESUMEN

Residential coal combustion is a significant contributor to particulate urban air pollution in Chinese mega cities and some regions in Europe. While the particulate emission factors and the chemical characteristics of the organic and inorganic aerosol from coal combustion have been extensively studied, the chemical composition and nonmethane organic gas (NMOG) emission factors from residential coal combustion are mostly unknown. We conducted 23 individual burns in a traditional Chinese stove used for heating and cooking using five different coals with Chinese origins, characterizing the NMOG emissions using a proton transfer reaction time-of-flight mass spectrometer. The measured emission factors range from 1.5 to 14.1 g/kgcoal for bituminous coals and are below 0.1 g/kgcoal for anthracite coals. The emission factors from the bituminous coals are mostly influenced by the time until the coal is fully ignited. The emissions from the bituminous coals are dominated by aromatic and oxygenated aromatic compounds with a significant contribution of hydrocarbons. The results of this study can help to improve urban air pollution modeling in China and Eastern Europe and can be used to constrain a coal burning factor in ambient gas phase positive matrix factorization studies.


Asunto(s)
Contaminantes Atmosféricos , Carbón Mineral , China , Europa (Continente) , Europa Oriental , Espectrometría de Masas , Protones , Tiempo de Reacción
20.
Rapid Commun Mass Spectrom ; 31(24): 2101-2108, 2017 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28972298

RESUMEN

RATIONALE: Levoglucosan is formed from cellulose during biomass burning. It is therefore often used as a specific tracer to quantify the contribution of wood burning to the aerosol loading. The stable oxygen isotope composition (δ18 O value) of biomass is determined by the water cycle and varies regionally, and hence the δ18 O value of levoglucosan could help to identify source regions of organic aerosols. METHODS: After solvent extraction of the organic fraction and concentration steps, a recently developed methylation derivatisation technique was applied on experimental (i.e. controlled wood-burning experiments) and on ambient aerosol samples from Switzerland and Lithuania. The method achieves sufficient compound separation for isotope analysis in atmospheric particulate matter, enabling δ18 O analysis of levoglucosan by gas chromatography/pyrolysis-isotope ratio mass spectrometry (GC/Pyr-IRMS), with a precision better than 1.0 ‰ and an accuracy of 0.3 ‰. RESULTS: The δ18 O value of the levoglucosan released during controlled wood-burning experiments was not significantly different from the cellulose δ18 O values, which implies very little or no isotope fractionation during wood burning under the given conditions. While the δ18 O values of levoglucosan in Swiss samples were as expected for the source region, those in Lithuania were 1-4 ‰ lower than expected. This may be due to differences in vegetation (grass vs wood) or burning conditions (high vs low temperatures). CONCLUSIONS: Low oxygen isotope fractionation between cellulose and levoglucosan and clear differences in levoglucosan δ18 O values between the Swiss and Lithuanian ambient samples demonstrate that our new method is useful for source appointment studies on wood-burning-derived aerosols.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA