Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Plant Physiol ; 162(1): 225-38, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23487433

RESUMEN

Colletotrichum higginsianum is a hemibiotrophic ascomycete fungus that is adapted to Arabidopsis (Arabidopsis thaliana). After breaching the host surface, the fungus establishes an initial biotrophic phase in the penetrated epidermis cell, before necrotrophic growth is initiated upon further host colonization. We observed that partitioning of major leaf carbohydrates was shifted in favor of sucrose and at the expense of starch during necrotrophic fungal growth. Arabidopsis mutants with impaired starch turnover were more susceptible toward C. higginsianum infection, exhibiting a strong negative correlation between diurnal carbohydrate accumulation and fungal proliferation for the tested genotypes. By altering the length of the light phase and employing additional genotypes impaired in nocturnal carbon mobilization, we revealed that reduced availability of carbon enhances susceptibility in the investigated pathosystem. Systematic starvation experiments resulted in two important findings. First, we showed that carbohydrate supply by the host is dispensable during biotrophic growth of C. higginsianum, while carbon deficiency was most harmful to the host during the necrotrophic colonization phase. Compared with the wild type, the increases in the total salicylic acid pool and camalexin accumulation were reduced in starch-free mutants at late interaction stages, while an increased ratio of free to total salicylic acid did not convey elevated pathogenesis-related gene expression in starch-free mutants. These observations suggest that reduced carbon availability dampens induced defense responses. In contrast, starch-free mutants were more resistant toward the fungal biotroph Erysiphe cruciferarum, indicating that reduced carbohydrate availability influences susceptibility differently in the interaction with the investigated hemibiotrophic and biotrophic fungal pathogens.


Asunto(s)
Arabidopsis/fisiología , Metabolismo de los Hidratos de Carbono , Colletotrichum/patogenicidad , Susceptibilidad a Enfermedades , Enfermedades de las Plantas/inmunología , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/efectos de la radiación , Ascomicetos/fisiología , Carbono/deficiencia , Ritmo Circadiano , ADN de Hongos/genética , Genotipo , Glucósidos/análisis , Glucósidos/metabolismo , Indoles/análisis , Indoles/metabolismo , Luz , Mutación , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Ácido Salicílico/análisis , Ácido Salicílico/metabolismo , Almidón/metabolismo , Tiazoles/análisis , Tiazoles/metabolismo
2.
Plant Methods ; 16: 122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32905125

RESUMEN

BACKGROUND: Up-to-now, several biochemical methods have been developed to allow specific organelle isolation from plant tissues. These procedures are often time consuming, require substantial amounts of plant material, have low yield or do not result in pure organelle fractions. Moreover, barely a protocol allows rapid and flexible isolation of different subcellular compartments. The recently published SpySystem enables the in vitro and in vivo covalent linkage between proteins and protein complexes. Here we describe the use of this system to tag and purify plant organelles. RESULTS: We developed a simple and specific method to in vivo tag and visualize, as well as isolate organelles of interest from crude plant extracts. This was achieved by expressing the covalent split-isopeptide interaction system, consisting of SpyTag and SpyCatcher, in Nicotiana benthamiana leaves. The functionality of the SpySystem in planta, combined with downstream applications, was proven. Using organelle-specific membrane anchor sequences to program the sub-cellular localization of the SpyTag peptide, we could tag the outer envelope of chloroplasts and mitochondria. By co-expression of a cytosolic, soluble eGFP-SpyCatcher fusion protein, we could demonstrate intermolecular isopeptide formation in planta and proper organelle targeting of the SpyTag peptides to the respective organelles. For one-step organelle purification, recombinantly expressed SpyCatcher protein was immobilized on magnetic microbeads via covalent thiol-etherification. To isolate tagged organelles, crude plant filtrates were mixed with SpyCatcher-coated beads which allowed isolation of SpyTag-labelled chloroplasts and mitochondria. The isolated organelles were intact, showed high yield and hardly contaminants and can be subsequently used for further molecular or biochemical analysis. CONCLUSION: The SpySystem can be used to in planta label subcellular structures, which enables the one-step purification of organelles from crude plant extracts. The beauty of the system is that it works as a covalent toolbox. Labeling of different organelles with individual tags under control of cell-specific and/or inducible promoter sequences will allow the rapid organelle and cell-type specific purification. Simultaneous labeling of different organelles with specific Tag/Catcher combinations will enable simultaneous isolation of different organelles from one plant extract in future experiments.

3.
ACS Omega ; 3(11): 15829-15836, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31458231

RESUMEN

This work presents a pioneering multidisciplinary approach toward enhancing biohybrid light-emitting diodes (BioHLEDs), merging synthetic biology tools, polymer chemistry, and device engineering to design a thin color down-converting coating with a single white-emitting fluorescent protein (WFP). In particular, the WFP consists of fused red-, green-, and blue-emitting FPs following the so-called protein superglue approach. This WFP shows an efficient and stable white emission originated from a Förster resonance energy transfer between FP moieties. The emission chromaticity is, in addition, easily controlled by the rigidity of the polymer matrix of the coating, reaching photoluminescence quantum yields of 26% that stand out among intrinsic white-emitting materials. The WFP single-component color down-converting packaging was applied to fabricate BioHLEDs featuring efficient neutral white emission that is stable over 400 h. This represents the most stable BioHLED reported to date. Thus, this work is a landmark for the use of synthetic biology tools to design tailored luminescent biomaterials for lighting applications.

4.
PLoS One ; 12(6): e0179740, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28654665

RESUMEN

Building proteins into larger, post-translational assemblies in a defined and stable way is still a challenging task. A promising approach relies on so-called tag/catcher systems that are fused to the proteins of interest and allow a durable linkage via covalent intermolecular bonds. Tags and catchers are generated by splitting protein domains that contain intramolecular isopeptide or ester bonds that form autocatalytically under physiological conditions. There are already numerous biotechnological and medical applications that demonstrate the usefulness of covalent linkages mediated by these systems. Additional covalent tag/catcher systems would allow creating more complex and ultra-stable protein architectures and networks. Two of the presently available tag/catcher systems were derived from closely related CnaB-domains of Streptococcus pyogenes and Streptococcus dysgalactiae proteins. However, it is unclear whether domain splitting is generally tolerated within the CnaB-family or only by a small subset of these domains. To address this point, we have selected a set of four CnaB domains of low sequence similarity and characterized the resulting tag/catcher systems by computational and experimental methods. Experimental testing for intermolecular isopeptide bond formation demonstrated two of the four systems to be functional. For these two systems length and sequence variations of the peptide tags were investigated revealing only a relatively small effect on the efficiency of the reaction. Our study suggests that splitting into tag and catcher moieties is tolerated by a significant portion of the naturally occurring CnaB-domains, thus providing a large reservoir for the design of novel tag/catcher systems.


Asunto(s)
Modelos Moleculares , Dominios Proteicos , Streptococcus/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-26557643

RESUMEN

Application of industrial enzymes for production of valuable chemical compounds has greatly benefited from recent developments in Systems and Synthetic Biology. Both, in vivo and in vitro systems have been established, allowing conversion of simple into complex compounds. Metabolic engineering in living cells needs to be balanced which is achieved by controlling gene expression levels, translation, scaffolding, compartmentation, and flux control. In vitro applications are often hampered by limited protein stability/half-life and insufficient rates of substrate conversion. To improve stability and catalytic activity, proteins are post-translationally modified and arranged in artificial metabolic channels. Within the review article, we will first discuss the supramolecular organization of enzymes in living systems and second summarize current and future approaches to design artificial metabolic channels by additive manufacturing for the efficient production of desired products.

6.
Adv Mater ; 27(37): 5493-8, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26271025

RESUMEN

The first bioinspired hybrid white-light-emitting diodes (bio-HLEDs) featuring protein cascade coatings are presented. For easy fabrication a new strategy to stabilize proteins in rubber-like material was developed. The synergy between the excellent features of fluorescent proteins and the easily processed rubber produces bio-HLEDs with less than 10% loss in luminous efficiency over 100 hours.


Asunto(s)
Materiales Biomiméticos , Iluminación/instrumentación , Proteínas Luminiscentes , Materiales Biomiméticos/química , Escherichia coli , Geles/química , Luz , Iluminación/métodos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/aislamiento & purificación , Proteínas Luminiscentes/metabolismo , Polietilenglicoles/química , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrofotometría , Vacio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA