Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Cell ; 176(6): 1295-1309.e15, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30773314

RESUMEN

Cancers from sun-exposed skin accumulate "driver" mutations, causally implicated in oncogenesis. Because errors incorporated during translesion synthesis (TLS) opposite UV lesions would generate these mutations, TLS mechanisms are presumed to underlie cancer development. To address the role of TLS in skin cancer formation, we determined which DNA polymerase is responsible for generating UV mutations, analyzed the relative contributions of error-free TLS by Polη and error-prone TLS by Polθ to the replication of UV-damaged DNA and to genome stability, and examined the incidence of UV-induced skin cancers in Polθ-/-, Polη-/-, and Polθ-/- Polη-/- mice. Our findings that the incidence of skin cancers rises in Polθ-/- mice and is further exacerbated in Polθ-/- Polη-/- mice compared with Polη-/- mice support the conclusion that error-prone TLS by Polθ provides a safeguard against tumorigenesis and suggest that cancer formation can ensue in the absence of somatic point mutations.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/fisiología , Neoplasias Cutáneas/metabolismo , Animales , Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/fisiología , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Inestabilidad Genómica/genética , Humanos , Ratones , Ratones Noqueados , Mutación/genética , Piel/citología , Piel/metabolismo , Neoplasias Cutáneas/genética , Rayos Ultravioleta/efectos adversos , ADN Polimerasa theta
2.
Genes Dev ; 38(5-6): 213-232, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38503516

RESUMEN

Purified translesion synthesis (TLS) DNA polymerases (Pols) replicate through DNA lesions with a low fidelity; however, TLS operates in a predominantly error-free manner in normal human cells. To explain this incongruity, here we determine whether Y family Pols, which play an eminent role in replication through a diversity of DNA lesions, are incorporated into a multiprotein ensemble and whether the intrinsically high error rate of the TLS Pol is ameliorated by the components in the ensemble. To this end, we provide evidence for an indispensable role of Werner syndrome protein (WRN) and WRN-interacting protein 1 (WRNIP1) in Rev1-dependent TLS by Y family Polη, Polι, or Polκ and show that WRN, WRNIP1, and Rev1 assemble together with Y family Pols in response to DNA damage. Importantly, we identify a crucial role of WRN's 3' → 5' exonuclease activity in imparting high fidelity on TLS by Y family Pols in human cells, as the Y family Pols that accomplish TLS in an error-free manner manifest high mutagenicity in the absence of WRN's exonuclease function. Thus, by enforcing high fidelity on TLS Pols, TLS mechanisms have been adapted to safeguard against genome instability and tumorigenesis.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Síntesis Translesional de ADN , Helicasa del Síndrome de Werner , Humanos , Daño del ADN , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Exonucleasas/metabolismo , Síntesis Translesional de ADN/genética , Helicasa del Síndrome de Werner/genética , Helicasa del Síndrome de Werner/metabolismo
3.
Genes Dev ; 35(17-18): 1256-1270, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34385260

RESUMEN

Chemotherapy with cisplatin becomes limiting due to toxicity and secondary malignancies. In principle, therapeutics could be improved by targeting translesion synthesis (TLS) polymerases (Pols) that promote replication through intrastrand cross-links, the major cisplatin-induced DNA adduct. However, to specifically target malignancies with minimal adverse effects on normal cells, a good understanding of TLS mechanisms in normal versus cancer cells is paramount. We show that in normal cells, TLS through cisplatin intrastrand cross-links is promoted by Polη- or Polι-dependent pathways, both of which require Rev1 as a scaffolding component. In contrast, cancer cells require Rev1-Polζ. Our findings that a recently identified Rev1 inhibitor, JH-RE-06, purported to specifically disrupt Rev1 interaction with Polζ to block TLS through cisplatin adducts in cancer cells, abrogates Rev1's ability to function with Y family Pols as well, implying that by inactivating Rev1-dependent TLS in normal cells, this inhibitor will exacerbate the toxicity and tumorigenicity of chemotherapeutics with cisplatin.


Asunto(s)
Cisplatino , Daño del ADN , Cisplatino/farmacología , Reparación del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo
4.
Genes Dev ; 33(5-6): 282-287, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30808656

RESUMEN

Here we show that translesion synthesis (TLS) opposite 1,N6-ethenodeoxyadenosine (εdA), which disrupts Watson-Crick base pairing, occurs via Polι/Polζ-, Rev1-, and Polθ-dependent pathways. The requirement of Polι/Polζ is consistent with the ability of Polι to incorporate nucleotide opposite εdA by Hoogsteen base pairing and of Polζ to extend synthesis. Rev1 polymerase and Polθ conduct TLS opposite εdA via alternative error-prone pathways. Strikingly, in contrast to extremely error-prone TLS opposite εdA by purified Polθ, it performs predominantly error-free TLS in human cells. Reconfiguration of the active site opposite εdA would provide Polθ the proficiency for error-free TLS in human cells.


Asunto(s)
Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiadenosinas/metabolismo , Dominio Catalítico , Aductos de ADN/metabolismo , Humanos , ADN Polimerasa theta
5.
J Biol Chem ; 299(1): 102727, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410434

RESUMEN

Eukaryotic cells harbor two DNA-binding clamps, proliferating cell nuclear antigen (PCNA), and another clamp commonly referred to as 9-1-1 clamp. In contrast to the essential role of PCNA in DNA replication as a sliding clamp for DNA polymerase (Pol) δ, no such role in DNA synthesis has been identified for the human 9-1-1 clamp or the orthologous yeast 17-3-1 clamp. The only role identified for either the 9-1-1 or 17-3-1 clamp is in the recruitment of signal transduction kinases, which affect the activation of cell cycle checkpoints in response to DNA damage. However, unlike the loading of PCNA by the replication factor C (RFC) clamp loader onto 3'-recessed DNA junctions for processive DNA synthesis by Polδ, the 17-3-1 clamp or the 9-1-1 clamp is loaded by their respective clamp loader Rad24-RFC or RAD17-RFC onto the 5'-recessed DNA junction of replication protein A-coated DNA for the recruitment of signal transduction kinases. Here, we identify a novel role of 17-3-1 clamp as a sliding clamp for DNA synthesis by Polε. We provide evidence that similar to the loading of PCNA by RFC, the 17-3-1 clamp is loaded by the Rad24-RFC clamp loader at the 3'-recessed DNA junction in an ATP-dependent manner. However, unlike PCNA, the 17-3-1 clamp does not enhance the processivity of DNA synthesis by Polε; instead, it greatly increases the catalytic efficiency of Polε for correct nucleotide incorporation. Furthermore, we show that the same PCNA-interacting peptide domain in the polymerase 2 catalytic subunit mediates Polε interaction with the 17-3-1 clamp and with PCNA.


Asunto(s)
ADN Polimerasa II , Replicación del ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , ADN Polimerasa II/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Unión Proteica , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Biol Chem ; 299(7): 104913, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37307920

RESUMEN

The evidence that purified pol2-M644G DNA polymerase (Pol)ε exhibits a highly elevated bias for forming T:dTTP mispairs over A:dATP mispairs and that yeast cells harboring this Polε mutation accumulate A > T signature mutations in the leading strand have been used to assign a role for Polε in replicating the leading strand. Here, we determine whether A > T signature mutations result from defects in Polε proofreading activity by analyzing their rate in Polε proofreading defective pol2-4 and pol2-M644G cells. Since purified pol2-4 Polε exhibits no bias for T:dTTP mispair formation, A > T mutations are expected to occur at a much lower rate in pol2-4 than in pol2-M644G cells if Polε replicated the leading strand. Instead, we find that the rate of A > T signature mutations are as highly elevated in pol2-4 cells as in pol2-M644G cells; furthermore, the highly elevated rate of A > T signature mutations is severely curtailed in the absence of PCNA ubiquitination or Polζ in both the pol2-M644G and pol2-4 strains. Altogether, our evidence supports the conclusion that the leading strand A > T signature mutations derive from defects in Polε proofreading activity and not from the role of Polε as a leading strand replicase, and it conforms with the genetic evidence for a major role of Polδ in replication of both the DNA strands.


Asunto(s)
ADN Polimerasa II , Replicación del ADN , Mutagénesis , Mutación , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ADN Polimerasa II/metabolismo , Replicación del ADN/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN Polimerasa III/metabolismo
7.
J Biol Chem ; 299(4): 104598, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36898578

RESUMEN

DNA mismatch repair (MMR) in eukaryotes is believed to occur post-replicatively, wherein nicks or gaps in the nascent DNA strand are suggested to serve as strand discrimination signals. However, how such signals are generated in the nascent leading strand has remained unclear. Here we examine the alternative possibility that MMR occurs in conjunction with the replication fork. To this end, we utilize mutations in the PCNA interacting peptide (PIP) domain of the Pol3 or Pol32 subunit of DNA polymerase δ (Polδ) and show that these pip mutations suppress the greatly elevated mutagenesis in yeast strains harboring the pol3-01 mutation defective in Polδ proofreading activity. And strikingly, they suppress the synthetic lethality of pol3-01 pol2-4 double mutant strains, which arises from the vastly enhanced mutability due to defects in the proofreading functions of both Polδ and Polε. Our finding that suppression of elevated mutagenesis in pol3-01 by the Polδ pip mutations requires intact MMR supports the conclusion that MMR operates at the replication fork in direct competition with other mismatch removal processes and with extension of synthesis from the mispair by Polδ. Furthermore, the evidence that Polδ pip mutations eliminate almost all the mutability of pol2-4 msh2Δ or pol3-01 pol2-4 adds strong support for a major role of Polδ in replication of both the leading and lagging DNA strands.


Asunto(s)
Reparación de la Incompatibilidad de ADN , ADN Polimerasa III , Proteínas de Saccharomyces cerevisiae , Reparación de la Incompatibilidad de ADN/genética , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Mutación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Gen , Unión Proteica
8.
Mol Cell ; 59(2): 163-175, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26145172

RESUMEN

Genetic studies with S. cerevisiae Polδ (pol3-L612M) and Polε (pol2-M644G) mutant alleles, each of which display a higher rate for the generation of a specific mismatch, have led to the conclusion that Polε is the primary leading strand replicase and that Polδ is restricted to replicating the lagging strand template. Contrary to this widely accepted view, here we show that Polδ plays a major role in the replication of both DNA strands, and that the paucity of pol3-L612M-generated errors on the leading strand results from their more proficient removal. Thus, the apparent lack of Polδ contribution to leading strand replication is due to differential mismatch removal rather than differential mismatch generation. Altogether, our genetic studies with Pol3 and Pol2 mutator alleles support the conclusion that Polδ, and not Polε, is the major DNA polymerase for carrying out both leading and lagging DNA synthesis.


Asunto(s)
ADN Polimerasa III/metabolismo , Replicación del ADN , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sustitución de Aminoácidos , Disparidad de Par Base , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN Polimerasa III/genética , ADN de Hongos/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Genoma Fúngico , Mutagénesis Sitio-Dirigida , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
9.
Genes Dev ; 29(24): 2588-602, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26680302

RESUMEN

Translesion synthesis (TLS) DNA polymerases (Pols) promote replication through DNA lesions; however, little is known about the protein factors that affect their function in human cells. In yeast, Rev1 plays a noncatalytic role as an indispensable component of Polζ, and Polζ together with Rev1 mediates a highly mutagenic mode of TLS. However, how Rev1 functions in TLS and mutagenesis in human cells has remained unclear. Here we determined the role of Rev1 in TLS opposite UV lesions in human and mouse fibroblasts and showed that Rev1 is indispensable for TLS mediated by Polη, Polι, and Polκ but is not required for TLS by Polζ. In contrast to its role in mutagenic TLS in yeast, Rev1 promotes predominantly error-free TLS opposite UV lesions in humans. The identification of Rev1 as an indispensable scaffolding component for Polη, Polι, and Polκ, which function in TLS in highly specialized ways opposite a diverse array of DNA lesions and act in a predominantly error-free manner, implicates a crucial role for Rev1 in the maintenance of genome stability in humans.


Asunto(s)
Reparación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/metabolismo , Rayos Ultravioleta , Animales , Células Cultivadas , Daño del ADN/fisiología , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Epistasis Genética , Fibroblastos/efectos de la radiación , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Mutagénesis/genética
11.
J Biol Chem ; 297(1): 100868, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34119520

RESUMEN

In a previous study, we showed that replication through the N1-methyl-deoxyadenosine (1-MeA) adduct in human cells is mediated via three different Polι/Polθ, Polη, and Polζ-dependent pathways. Based on biochemical studies with these Pols, in the Polι/Polθ pathway, we inferred a role for Polι in the insertion of a nucleotide (nt) opposite 1-MeA and of Polθ in extension of synthesis from the inserted nt; in the Polη pathway, we inferred that this Pol alone would replicate through 1-MeA; in the Polζ pathway, however, the Pol required for inserting an nt opposite 1-MeA had remained unidentified. In this study, we provide biochemical and genetic evidence for a role for Polλ in inserting the correct nt T opposite 1-MeA, from which Polζ would extend synthesis. The high proficiency of purified Polλ for inserting a T opposite 1-MeA implicates a role for Polλ-which normally uses W-C base pairing for DNA synthesis-in accommodating 1-MeA in a syn confirmation and forming a Hoogsteen base pair with T. The potential of Polλ to replicate through DNA lesions by Hoogsteen base pairing adds another novel aspect to Polλ's role in translesion synthesis in addition to its role as a scaffolding component of Polζ. We discuss how the action mechanisms of Polλ and Polζ could be restrained to inserting a T opposite 1-MeA and extending synthesis thereafter, respectively.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , ADN Polimerasa beta/metabolismo , Replicación del ADN , Adenosina Monofosfato/metabolismo , Emparejamiento Base , Línea Celular , Aductos de ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Humanos , Mutación
12.
J Biol Chem ; 295(18): 5918-5927, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32169903

RESUMEN

The action mechanisms revealed by the biochemical and structural analyses of replicative and translesion synthesis (TLS) DNA polymerases (Pols) are retained in their cellular roles. In this regard, DNA polymerase θ differs from other Pols in that whereas purified Polθ misincorporates an A opposite 1,N6-ethenodeoxyadenosine (ϵdA) using an abasic-like mode, Polθ performs predominantly error-free TLS in human cells. To test the hypothesis that Polθ adopts a different mechanism for replicating through ϵdA in human cells than in the purified Pol, here we analyze the effects of mutations in the two highly conserved tyrosine residues, Tyr-2387 and Tyr-2391, in the Polθ active site. Our findings that these residues are indispensable for TLS by the purified Pol but are not required in human cells, as well as other findings, provide strong evidence that the Polθ active site is reconfigured in human cells to stabilize ϵdA in the syn conformation for Hoogsteen base pairing with the correct nucleotide. The evidence that a DNA polymerase can configure its active site entirely differently in human cells than in the purified Pol establishes a new paradigm for DNA polymerase function.


Asunto(s)
Dominio Catalítico , Daño del ADN , Reparación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Replicación del ADN , Humanos , ADN Polimerasa theta
13.
J Biol Chem ; 294(50): 19048-19054, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31685662

RESUMEN

Cytarabine (AraC) is the mainstay for the treatment of acute myeloid leukemia. Although complete remission is observed in a large proportion of patients, relapse occurs in almost all the cases. The chemotherapeutic action of AraC derives from its ability to inhibit DNA synthesis by the replicative polymerases (Pols); the replicative Pols can insert AraCTP at the 3' terminus of the nascent DNA strand, but they are blocked at extending synthesis from AraC. By extending synthesis from the 3'-terminal AraC and by replicating through AraC that becomes incorporated into DNA, translesion synthesis (TLS) DNA Pols could reduce the effectiveness of AraC in chemotherapy. Here we identify the TLS Pols required for replicating through the AraC templating residue and determine their error-proneness. We provide evidence that TLS makes a consequential contribution to the replication of AraC-damaged DNA; that TLS through AraC is conducted by three different pathways dependent upon Polη, Polι, and Polν, respectively; and that TLS by all these Pols incurs considerable mutagenesis. The prominent role of TLS in promoting proficient and mutagenic replication through AraC suggests that TLS inhibition in acute myeloid leukemia patients would increase the effectiveness of AraC chemotherapy; and by reducing mutation formation, TLS inhibition may dampen the emergence of drug-resistant tumors and thereby the high incidence of relapse in AraC-treated patients.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Citarabina/farmacología , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/biosíntesis , Leucemia Mieloide Aguda/tratamiento farmacológico , Antimetabolitos Antineoplásicos/química , Citarabina/química , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Fibroblastos/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Conformación de Ácido Nucleico
14.
J Biol Chem ; 293(8): 2949-2958, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29330301

RESUMEN

Acrolein, an α,ß-unsaturated aldehyde, is generated in vivo as the end product of lipid peroxidation and from metabolic oxidation of polyamines, and it is a ubiquitous environmental pollutant. The reaction of acrolein with the N2 of guanine in DNA leads to the formation of γ-hydroxy-1-N2-propano-2' deoxyguanosine (γ-HOPdG), which can exist in DNA in a ring-closed or a ring-opened form. Here, we identified the translesion synthesis (TLS) DNA polymerases (Pols) that conduct replication through the permanently ring-opened reduced form of γ-HOPdG ((r) γ-HOPdG) and show that replication through this adduct is mediated via Rev1/Polη-, Polι/Polκ-, and Polθ-dependent pathways, respectively. Based on biochemical and structural studies, we propose a role for Rev1 and Polι in inserting a nucleotide (nt) opposite the adduct and for Pols η and κ in extending synthesis from the inserted nt in the respective TLS pathway. Based on genetic analyses and biochemical studies with Polθ, we infer a role for Polθ at both the nt insertion and extension steps of TLS. Whereas purified Rev1 and Polθ primarily incorporate a C opposite (r) γ-HOPdG, Polι incorporates a C or a T opposite the adduct; nevertheless, TLS mediated by the Polι-dependent pathway as well as by other pathways occurs in a predominantly error-free manner in human cells. We discuss the implications of these observations for the mechanisms that could affect the efficiency and fidelity of TLS Pols.


Asunto(s)
Daño del ADN , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiguanosina/análogos & derivados , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/metabolismo , Acroleína/toxicidad , Sustitución de Aminoácidos , Línea Celular , Aductos de ADN/síntesis química , Aductos de ADN/metabolismo , Replicación del ADN/efectos de los fármacos , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Desoxiguanosina/síntesis química , Desoxiguanosina/metabolismo , Contaminantes Ambientales/toxicidad , Humanos , Mutágenos/toxicidad , Mutación , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/genética , Compuestos Organofosforados/química , Compuestos Organofosforados/toxicidad , Multimerización de Proteína/efectos de los fármacos , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , ADN Polimerasa iota
16.
J Biol Chem ; 292(45): 18682-18688, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28939775

RESUMEN

N3-Methyladenine (3-MeA) is formed in DNA by reaction with S-adenosylmethionine, the reactive methyl donor, and by reaction with alkylating agents. 3-MeA protrudes into the DNA minor groove and strongly blocks synthesis by replicative DNA polymerases (Pols). However, the mechanisms for replicating through this lesion in human cells remain unidentified. Here we analyzed the roles of translesion synthesis (TLS) Pols in the replication of 3-MeA-damaged DNA in human cells. Because 3-MeA has a short half-life in vitro, we used the stable 3-deaza analog, 3-deaza-3-methyladenine (3-dMeA), which blocks the DNA minor groove similarly to 3-MeA. We found that replication through the 3-dMeA adduct is mediated via three different pathways, dependent upon Polι/Polκ, Polθ, and Polζ. As inferred from biochemical studies, in the Polι/Polκ pathway, Polι inserts a nucleotide (nt) opposite 3-dMeA and Polκ extends synthesis from the inserted nt. In the Polθ pathway, Polθ carries out both the insertion and extension steps of TLS opposite 3-dMeA, and in the Polζ pathway, Polζ extends synthesis following nt insertion by an as yet unidentified Pol. Steady-state kinetic analyses indicated that Polι and Polθ insert the correct nt T opposite 3-dMeA with a much reduced catalytic efficiency and that both Pols exhibit a high propensity for inserting a wrong nt opposite this adduct. However, despite their low fidelity of synthesis opposite 3-dMeA, TLS opposite this lesion replicates DNA in a highly error-free manner in human cells. We discuss the implications of these observations for TLS mechanisms in human cells.


Asunto(s)
Adenina/análogos & derivados , Aductos de ADN/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Adenina/toxicidad , Biocatálisis , Línea Celular , Reparación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Tasa de Mutación , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Interferencia de ARN , ADN Polimerasa iota , ADN Polimerasa theta
17.
Genes Dev ; 24(2): 123-8, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20080950

RESUMEN

The ultraviolet (UV)-induced (6-4) pyrimidine-pyrimidone photoproduct [(6-4) PP] confers a large structural distortion in DNA. Here we examine in human cells the roles of translesion synthesis (TLS) DNA polymerases (Pols) in promoting replication through a (6-4) TT photoproduct carried on a duplex plasmid where bidirectional replication initiates from an origin of replication. We show that TLS contributes to a large fraction of lesion bypass and that it is mostly error-free. We find that, whereas Pol eta and Pol iota provide alternate pathways for mutagenic TLS, surprisingly, Pol zeta functions independently of these Pols and in a predominantly error-free manner. We verify and extend these observations in mouse cells and conclude that, in human cells, TLS during replication can be markedly error-free even opposite a highly distorting DNA lesion.


Asunto(s)
Daño del ADN , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Dímeros de Pirimidina/genética , Animales , Línea Celular , Células Cultivadas , Daño del ADN/efectos de la radiación , Reparación del ADN , Humanos , Ratones , Rayos Ultravioleta
18.
Genes Dev ; 23(12): 1438-49, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19528320

RESUMEN

Unrepaired DNA lesions in the template strand block the replication fork. In yeast, Mec1 protein kinase-mediated replication checkpoint prevents the breakdown of replication forks and maintains viability in DNA-damaged cells going through the S phase. By ensuring that the replisome does not dissociate from the fork stalled at the lesion site, the replication checkpoint presumably coordinates the action of lesion bypass processes with the replisome. However, it has remained unclear as to which of the lesion bypass processes-translesion synthesis (TLS) and/or template switching-depend on the activation of the replication checkpoint. Here we determine if the Mec1 kinase and the subunits of the checkpoint clamp and the clamp loader are required for TLS. We show that proficient TLS can occur in the absence of these checkpoint proteins in nucleotide excision repair (NER)-proficient cells; however, in the absence of NER, checkpoint protein-mediated Rev1 phosphorylation contributes to increasing the proficiency of DNA polymerase zeta-dependent TLS.


Asunto(s)
Reparación del ADN/fisiología , ADN Bacteriano/genética , Saccharomyces cerevisiae/genética , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular/metabolismo , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Replicación del ADN , ADN Bacteriano/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Mutagénesis/efectos de la radiación , Nucleotidiltransferasas/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Rayos Ultravioleta
19.
J Biol Chem ; 290(50): 29794-800, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26491020

RESUMEN

N1-methyl adenine (1-MeA) is formed in DNA by reaction with alkylating agents and naturally occurring methyl halides. The 1-MeA lesion impairs Watson-Crick base pairing and blocks normal DNA replication. Here we identify the translesion synthesis (TLS) DNA polymerases (Pols) required for replicating through 1-MeA in human cells and show that TLS through this lesion is mediated via three different pathways in which Pols ι and θ function in one pathway and Pols η and ζ, respectively, function in the other two pathways. Our biochemical studies indicate that in the Polι/Polθ pathway, Polι would carry out nucleotide insertion opposite 1-MeA from which Polθ would extend synthesis. In the Polη pathway, this Pol alone would function at both the nucleotide insertion and extension steps of TLS, and in the third pathway, Polζ would extend from the nucleotide inserted opposite 1-MeA by an as yet unidentified Pol. Whereas by pushing 1-MeA into the syn conformation and by forming Hoogsteen base pair with the T residue, Polι would carry out TLS opposite 1-MeA, the ability of Polη to replicate through 1-MeA suggests that despite its need for Watson-Crick hydrogen bonding, Polη can stabilize the adduct in its active site. Remarkably, even though Pols η and ι are quite error-prone at inserting nucleotides opposite 1-MeA, TLS opposite this lesion in human cells occurs in a highly error-free fashion. This suggests that the in vivo fidelity of TLS Pols is regulated by factors such as post-translational modifications, protein-protein interactions, and possibly others.


Asunto(s)
Adenina/análogos & derivados , Replicación del ADN/genética , Adenina/metabolismo , Humanos
20.
Nature ; 465(7301): 1039-43, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20577207

RESUMEN

DNA polymerase eta (Poleta) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Poleta (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Poleta (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Poleta to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln 55, Arg 73 and Met 74. Together, these features define the basis for Poleta's action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Saccharomyces cerevisiae/enzimología , Neoplasias Cutáneas/enzimología , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Daño del ADN , ADN Polimerasa Dirigida por ADN/genética , Humanos , Cinética , Modelos Moleculares , Mutación Missense , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Saccharomyces cerevisiae/genética , Neoplasias Cutáneas/genética , Relación Estructura-Actividad , Xerodermia Pigmentosa/enzimología , Xerodermia Pigmentosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA