Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochemistry ; 57(5): 631-644, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29271191

RESUMEN

The hemoglobin of Synechococcus sp. PCC 7002, GlbN, is a monomeric group I truncated protein (TrHb1) that coordinates the heme iron with two histidine ligands at neutral pH. One of these is the distal histidine (His46), a residue that can be displaced by dioxygen and other small molecules. Here, we show with mutagenesis, electronic absorption spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy that at high pH and exclusively in the ferrous state, Lys42 competes with His46 for the iron coordination site. When b heme is originally present, the population of the lysine-bound species remains too small for detailed characterization; however, the population can be increased significantly by using dimethyl-esterified heme. Electronic absorption and NMR spectroscopies showed that the reversible ligand switching process occurs with an apparent pKa of 9.3 and a Lys-ligated population of ∼60% at the basic pH limit in the modified holoprotein. The switching rate, which is slow on the chemical shift time scale, was estimated to be 20-30 s-1 by NMR exchange spectroscopy. Lys42-His46 competition and attendant conformational rearrangement appeared to be related to weakened bis-histidine ligation and enhanced backbone dynamics in the ferrous protein. The pH- and redox-dependent ligand exchange process observed in GlbN illustrates the structural plasticity allowed by the TrHb1 fold and demonstrates the importance of electrostatic interactions at the heme periphery for achieving axial ligand selection. An analogy is drawn to the alkaline transition of cytochrome c, in which Lys-Met competition is detected at alkaline pH, but, in contrast to GlbN, in the ferric state only.


Asunto(s)
Proteínas Bacterianas/química , Hemo/química , Synechococcus/química , Hemoglobinas Truncadas/química , Secuencia de Aminoácidos , Complejos de Coordinación/química , Esterificación , Histidina/química , Concentración de Iones de Hidrógeno , Hierro/química , Lisina/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Presión , Propionatos , Conformación Proteica , Pliegue de Proteína , Protoporfirinas/química , Proteínas Recombinantes/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Electricidad Estática
2.
Biochemistry ; 56(4): 551-569, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28032976

RESUMEN

Nitrate metabolism in Chlamydomonas reinhardtii involves THB1, a monomeric hemoglobin thought to function as a nitric oxide dioxygenase (NOD). NOD activity requires dioxygen and nitric oxide binding followed by a one-electron oxidation of the heme iron and nitrate release. Unlike pentacoordinate flavohemoglobins, which are efficient NODs, THB1 uses two iron axial ligands: the conserved proximal histidine and a distal lysine (Lys53). As a ligand in both the oxidized (ferric) and reduced (ferrous) states, Lys53 is expected to lower the reorganization energy associated with electron transfer and therefore facilitate reduction of the ferric enzyme. In ferrous THB1, however, Lys53 must be displaced for substrate binding. To characterize Lys53 dynamics, THB1 was studied at various pH, temperatures, and pressures by NMR spectroscopy. Structural information indicates that the protein fold and Lys53 environment are independent of the oxidation state. High-pressure NMR experiments provided evidence that displacement of Lys53 occurs through fast equilibrium (∼3-4 × 103 s-1 at 1 bar, 298 K) with a low-population intermediate in which Lys53 is neutral and decoordinated. Once decoordinated, Lys53 is able to orient toward solvent and become protonated. The global lysine decoordination/reorientation/protonation processes measured by 15Nz-exchange spectroscopy are slow on the chemical shift time scale (101-102 s-1 at pH ≈ 6.5, 298 K) in both iron redox states. Thus, reorientation/protonation steps in ferrous THB1 appear to present a significant barrier for dioxygen binding, and consequently, NOD turnover. The results illustrate the role of distal ligand dynamics in regulating the kinetics of multistep heme redox reactions.


Asunto(s)
Proteínas Algáceas/química , Chlamydomonas reinhardtii/química , Hemo/química , Hemoglobinas/química , Lisina/química , Oxigenasas/química , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Clonación Molecular , Transporte de Electrón , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Hemo/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Histidina/química , Histidina/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Lisina/metabolismo , Modelos Moleculares , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Oxigenasas/genética , Oxigenasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Termodinámica
3.
Biochemistry ; 54(46): 6896-908, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26523621

RESUMEN

In addition to its well-known roles as an electrophile and general acid, the side chain of histidine often serves as a hydrogen bond (H-bond) acceptor. These H-bonds provide a convenient pH-dependent switch for local structure and functional motifs. In hundreds of instances, a histidine caps the N-terminus of α- and 310-helices by forming a backbone NH···Nδ1 H-bond. To characterize the resilience and dynamics of the histidine cap, we measured the trans H-bond scalar coupling constant, (2h)JNN, in several forms of Group 1 truncated hemoglobins and cytochrome b5. The set of 19 measured (2h)JNN values were between 4.0 and 5.4 Hz, generally smaller than in nucleic acids (~6-10 Hz) and indicative of longer, weaker bonds in the studied proteins. A positive linear correlation between (2h)JNN and the difference in imidazole ring (15)N chemical shift (Δ(15)N = |δ(15)Nδ1 - δ(15)Nε2|) was found to be consistent with variable H-bond length and variable cap population related to the ionization of histidine in the capping and noncapping states. The relative ease of (2h)JNN detection suggests that this parameter can become part of the standard arsenal for describing histidines in helix caps and other key structural and catalytic elements involving NH···N H-bonds. The combined nucleic acid and protein data extend the utility of (2h)JNN as a sensitive marker of local structural, dynamic, and thermodynamic properties in biomolecules.


Asunto(s)
Histidina/química , Proteínas/química , Hemoglobinas Truncadas/química , Proteínas Bacterianas/química , Chlamydomonas/química , Citocromos b5/química , Hemo/química , Hemoglobinas/química , Enlace de Hidrógeno , Metahemoglobina/análogos & derivados , Metahemoglobina/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Synechococcus/química , Synechocystis/química
4.
J Am Chem Soc ; 137(3): 1008-11, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25578373

RESUMEN

In biomolecules, bifurcated H-bonds typically involve the interaction of two donor protons with the two lone pairs of oxygen. Here, we present direct NMR evidence for a bifurcated H-bonding arrangement involving nitrogen as the acceptor atom. Specifically, the H-bond network comprises the Nδ1 atom of histidine and both the backbone N-H and side-chain Oγ-H of threonine within the conserved TXXH motif of ankyrin repeat (AR) proteins. Identification of the H-bonding partners is achieved via solution NMR H-bond scalar coupling (HBC) and H/D isotope shift experiments. Quantitative determination of (2h)J(NN) HBCs supports that Thr N-H···Nδ1 His H-bonds within internal repeats are stronger (∼4 Hz) than in the solvent exposed C-terminal AR (∼2 Hz). In agreement, pKa values for the buried histidines bridging internal ARs are several units lower than those of the C-terminus. Quantum chemical calculations show that the relevant (2h)J and (1h)J couplings are dominated by the Fermi contact interaction. Finally, a Thr-to-Val replacement, which eliminates the Thr Oγ-H···Nδ1 His H-bond and decreases protein stability, results in a 25% increase in (2h)J(NN), attributed to optimization of the Val N-H···Nδ1 His H-bond. Overall, the results provide new insights into the H-bonding properties of histidine, a refined structural rationalization for the folding cooperativity of AR proteins, and a challenging benchmark for the calculation of HBCs.


Asunto(s)
Repetición de Anquirina , Ancirinas/química , Resonancia Magnética Nuclear Biomolecular , Enlace de Hidrógeno , Modelos Moleculares , Teoría Cuántica
5.
Biochemistry ; 53(28): 4573-89, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24964018

RESUMEN

The nuclear genome of the model organism Chlamydomonas reinhardtii contains genes for a dozen hemoglobins of the truncated lineage. Of those, THB1 is known to be expressed, but the product and its function have not yet been characterized. We present mutagenesis, optical, and nuclear magnetic resonance data for the recombinant protein and show that at pH near neutral in the absence of added ligand, THB1 coordinates the heme iron with the canonical proximal histidine and a distal lysine. In the cyanomet state, THB1 is structurally similar to other known truncated hemoglobins, particularly the heme domain of Chlamydomonas eugametos LI637, a light-induced chloroplastic hemoglobin. Recombinant THB1 is capable of binding nitric oxide (NO(•)) in either the ferric or ferrous state and has efficient NO(•) dioxygenase activity. By using different C. reinhardtii strains and growth conditions, we demonstrate that the expression of THB1 is under the control of the NIT2 regulatory gene and that the hemoglobin is linked to the nitrogen assimilation pathway.


Asunto(s)
Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/biosíntesis , Regulación de la Expresión Génica de las Plantas/fisiología , Hemoglobinas/biosíntesis , Lisina/metabolismo , Nitrógeno/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/química , Hemo/química , Hemo/metabolismo , Hemoglobinas/química , Hemoglobinas/genética , Concentración de Iones de Hidrógeno , Lisina/química , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nitrógeno/química
6.
Biochemistry ; 52(20): 3478-88, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23607716

RESUMEN

Iron-protoporphyrin IX, or b heme, is utilized as such by a large number of proteins and enzymes. In some cases, notably the c-type cytochromes, this group undergoes a posttranslational covalent attachment to the polypeptide chain, which adjusts the physicochemical properties of the holoprotein. The hemoglobin from the cyanobacterium Synechocystis sp. PCC 6803 (GlbN), contrary to the archetypical hemoglobin, modifies its b heme covalently. The posttranslational modification links His117, a residue that does not coordinate the iron, to the porphyrin 2-vinyl substituent and forms a hybrid b/c heme. The reaction is an electrophilic addition that occurs spontaneously in the ferrous state of the protein. This apparently facile type of heme modification has been observed in only two cyanobacterial GlbNs. To explore the determinants of the reaction, we examined the behavior of Synechocystis GlbN variants containing a histidine at position 79, which is buried against the porphyrin 4-vinyl substituent. We found that L79H/H117A GlbN bound the heme weakly but nevertheless formed a cross-link between His79 Nε2 and the heme 4-Cα. In addition to this linkage, the single variant L79H GlbN also formed the native His117-2-Cα bond yielding an unprecedented bis-alkylated protein adduct. The ability to engineer the doubly modified protein indicates that the histidine-heme modification in GlbN is robust and could be engineered in different local environments. The rarity of the histidine linkage in natural proteins, despite the ease of reaction, is proposed to stem from multiple sources of negative selection.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Animales , Histidina/genética , Histidina/metabolismo , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Procesamiento Proteico-Postraduccional , Synechocystis/química , Synechocystis/metabolismo
7.
J Biol Inorg Chem ; 17(4): 599-609, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22349976

RESUMEN

Many heme proteins undergo covalent attachment of the heme group to a protein side chain. Such posttranslational modifications alter the thermodynamic and chemical properties of the holoprotein. Their importance in biological processes makes them attractive targets for mechanistic studies. We have proposed a reductively driven mechanism for the covalent heme attachment in the monomeric hemoglobins produced by the cyanobacteria Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 (GlbN) (Nothnagel et al. in J Biol Inorg Chem 16:539-552, 2011). These GlbNs coordinate the heme iron with two axial histidines, a feature that distinguishes them from most hemoglobins and conditions their redox properties. Here, we uncovered evidence for an electron exchange chain reaction leading to complete heme modification upon substoichiometric reduction of GlbN prepared in the ferric state. The GlbN electron self-exchange rate constants measured by NMR spectroscopy were on the order of 10(2)-10(3) M(-1) s(-1) and were consistent with the proposed autocatalytic process. NMR data on ferrous and ferric Synechococcus GlbN in solution indicated little dependence of the structure on the redox state of the iron or cross-link status of the heme group. This allowed the determination of lower bounds to the cross-exchange rate constants according to Marcus theory. The observations illustrate the ability of bishistidine hemoglobins to undergo facile interprotein electron transfer and the chemical relevance of such transfer for covalent heme attachment.


Asunto(s)
Electrones , Hemoglobinas/metabolismo , Procesamiento Proteico-Postraduccional , Synechococcus/química , Synechocystis/química , Hemoglobinas/química , Hemoglobinas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
8.
Chem Biodivers ; 9(9): 1703-17, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22976963

RESUMEN

The hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002 (GlbN) contains three tyrosines (Tyr5, Tyr22, and Tyr53), each of which undergoes a structural rearrangement when the protein binds an exogenous ligand such as cyanide. We explored the use of 3-fluorotyrosine and (19)F-NMR spectroscopy for the characterization of GlbN. Assignment of (19)F resonances in fluorinated GlbN (GlbN*) was achieved with individual Tyr5Phe and Tyr53Phe replacements. We observed marked variations in chemical shift and linewidth reflecting the dependence of structural and dynamic properties on oxidation state, ligation state, and covalent attachment of the heme group. The isoelectronic complexes of ferric GlbN* with cyanide and ferrous GlbN* with carbon monoxide gave contrasting spectra, the latter exhibiting heterogeneity and enhanced internal motions on a microsecond-to-millisecond time scale. The strength of the H-bond network involving Tyr22 (B10) and bound cyanide was tested at high pH. 3-Fluorotyrosine at position 22 had a pK(a) value at least 3 units higher than its intrinsic value, 8.5. In addition, evidence was found for long-range communication among the tyrosine sites. These observations demonstrated the utility of the 3-fluorotyrosine approach to gain insight in hemoglobin properties.


Asunto(s)
Proteínas Bacterianas/química , Hemoglobinas/química , Espectroscopía de Resonancia Magnética , Synechococcus/química , Hemoglobinas Truncadas/química , Tirosina/análogos & derivados , Proteínas Bacterianas/metabolismo , Hemoglobinas/metabolismo , Modelos Moleculares , Synechococcus/metabolismo , Hemoglobinas Truncadas/metabolismo , Tirosina/química
9.
J Biol Inorg Chem ; 16(4): 539-52, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21240532

RESUMEN

In the absence of an exogenous ligand, the hemoglobins from the cyanobacteria Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002 coordinate the heme group with two axial histidines (His46 and His70). These globins also form a covalent linkage between the heme 2-vinyl substituent and His117. The in vitro mechanism of heme attachment to His117 was examined with a combination of site-directed mutagenesis, NMR spectroscopy, and optical spectroscopy. The results supported an electrophilic addition with vinyl protonation being the rate-determining step. Replacement of His117 with a cysteine demonstrated that the reaction could occur with an alternative nucleophile. His46 (distal histidine) was implicated in the specificity of the reaction for the 2-vinyl group as well as protection of the protein from oxidative damage caused by exposure to exogenous H(2)O(2).


Asunto(s)
Hemo/química , Hemoglobinas/química , Histidina/química , Synechococcus/química , Synechocystis/química , Peróxido de Hidrógeno/química , Modelos Moleculares , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular
10.
Biochemistry ; 49(33): 7000-11, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20669934

RESUMEN

Cyanobacterium Synechococcus sp. PCC 7002 contains a single gene (glbN) coding for GlbN, a protein of the 2/2 hemoglobin lineage. The precise function of GlbN is not known, but comparison to similar 2/2 hemoglobins suggests that reversible dioxygen binding is not its main activity. In this report, the results of in vitro and in vivo experiments probing the role of GlbN are presented. Transcription profiling indicated that glbN is not strongly regulated under any of a large number of growth conditions and that the gene is probably constitutively expressed. High levels of nitrate, used as the sole source of nitrogen, and exposure to nitric oxide were tolerated better by the wild-type strain than a glbN null mutant, whereas overproduction of GlbN in the null mutant background restored the wild-type growth. The cellular contents of reactive oxygen/nitrogen species were elevated in the null mutant under all conditions and were highest under NO challenge or in the presence of high nitrate concentrations. GlbN overproduction attenuated these contents significantly under the latter conditions. The analysis of cell extracts revealed that the heme of GlbN was covalently bound to overproduced GlbN apoprotein in cells grown under microoxic conditions. A peroxidase assay showed that purified GlbN does not possess significant hydrogen peroxidase activity. It was concluded that GlbN protects cells from reactive nitrogen species that could be encountered naturally during growth on nitrate or under denitrifying conditions. The solution structure of covalently modified GlbN was determined and used to rationalize some of its chemical properties.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Synechococcus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Hemo/química , Hemo/metabolismo , Hemoglobinas/genética , Hemoglobinas/aislamiento & purificación , Modelos Moleculares , Mutación , Conformación Proteica , Synechococcus/química , Synechococcus/genética , Synechococcus/crecimiento & desarrollo , Transcripción Genética
11.
J Inorg Biochem ; 177: 171-182, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28968520

RESUMEN

The cyanobacterium Synechococcus sp. PCC 7002 produces a monomeric hemoglobin (GlbN) implicated in the detoxification of reactive nitrogen and oxygen species. GlbN contains a b heme, which can be modified under certain reducing conditions. The modified protein (GlbN-A) has one heme-histidine C-N linkage similar to the C-S linkage of cytochrome c. No clear functional role has been assigned to this modification. Here, optical absorbance and NMR spectroscopies were used to compare the reactivity of GlbN and GlbN-A toward nitric oxide (NO). Both forms of the protein are capable of NO dioxygenase activity and both undergo heme bleaching after multiple NO challenges. GlbN and GlbN-A bind NO in the ferric state and form diamagnetic complexes (FeIII-NO) that resist reductive nitrosylation to the paramagnetic FeII-NO forms. Dithionite reduction of FeIII-NO GlbN and GlbN-A, however, resulted in distinct outcomes. Whereas GlbN-A rapidly formed the expected FeII-NO complex, NO binding to FeII GlbN caused immediate heme loss and, remarkably, was followed by slow heme rebinding and HNO (nitrosyl hydride) production. Additionally, combining FeIII GlbN, 15N-labeled nitrite, and excess dithionite resulted in the formation of FeII-H15NO GlbN. Dithionite-mediated HNO production was also observed for the related GlbN from Synechocystis sp. PCC 6803. Although ferrous GlbN-A appeared capable of trapping preformed HNO, the histidine-heme post-translational modification extinguished the NO reduction chemistry associated with GlbN. Overall, the results suggest a role for the covalent modification in FeII GlbNs: protection from NO-mediated heme loss and prevention of HNO formation.


Asunto(s)
Proteínas Bacterianas/química , Hemo/química , Óxido Nítrico/metabolismo , Hemoglobinas Truncadas/química , Ligandos , Espectroscopía de Resonancia Magnética , Óxidos de Nitrógeno/metabolismo , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Oxígeno/química , Oxigenasas/química , Oxigenasas/metabolismo , Procesamiento Proteico-Postraduccional , Synechococcus/química , Synechocystis/química
12.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 6): 718-25, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26057801

RESUMEN

THB1 is one of several group 1 truncated hemoglobins (TrHb1s) encoded in the genome of the unicellular green alga Chlamydomonas reinhardtii. THB1 expression is under the control of NIT2, the master regulator of nitrate assimilation, which also controls the expression of the only nitrate reductase in the cell, NIT1. In vitro and physiological evidence suggests that THB1 converts the nitric oxide generated by NIT1 into nitrate. To aid in the elucidation of the function and mechanism of THB1, the structure of the protein was solved in the ferric state. THB1 resembles other TrHb1s, but also exhibits distinct features associated with the coordination of the heme iron by a histidine (proximal) and a lysine (distal). The new structure illustrates the versatility of the TrHb1 fold, suggests factors that stabilize the axial ligation of a lysine, and highlights the difficulty of predicting the identity of the distal ligand, if any, in this group of proteins.


Asunto(s)
Proteínas Algáceas/química , Chlamydomonas reinhardtii/química , Hemo/química , Histidina/química , Lisina/química , Nitrato-Reductasa/química , Hemoglobinas Truncadas/química , Proteínas Algáceas/genética , Secuencias de Aminoácidos , Chlamydomonas reinhardtii/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Hierro/química , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Nitrato-Reductasa/genética , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homología Estructural de Proteína , Hemoglobinas Truncadas/genética
13.
J Inorg Biochem ; 141: 198-207, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25304367

RESUMEN

The hemoglobins of the cyanobacteria Synechococcus and Synechocystis (GlbNs) are capable of spontaneous and irreversible attachment of the b heme to the protein matrix. The reaction, which saturates the heme 2-vinyl by addition of a histidine residue, is reproduced in vitro by preparing the recombinant apoprotein, adding ferric heme, and reducing the iron to the ferrous state. Spontaneous covalent attachment of the heme is potentially useful for protein engineering purposes. Thus, to explore whether the histidine-heme linkage can serve in such applications, we attempted to introduce it in a test protein. We selected as our target the heme domain of Chlamydomonas eugametos LI637 (CtrHb), a eukaryotic globin that exhibits less than 50% sequence identity with the cyanobacterial GlbNs. We chose two positions, 75 in the FG corner and 111 in the H helix, to situate a histidine near a vinyl group. We characterized the proteins with gel electrophoresis, absorbance spectroscopy, and NMR analysis. Both T111H and L75H CtrHbs reacted upon reduction of the ferric starting material containing cyanide as the distal ligand to the iron. With L75H CtrHb, nearly complete (>90%) crosslinking was observed to the 4-vinyl as expected from the X-ray structure of wild-type CtrHb. Reaction of T111H CtrHb also occurred at the 4-vinyl, in a 60% yield indicating a preference for the flipped heme orientation in the starting material. The work suggests that the His-heme modification will be applicable to the design of proteins with a non-dissociable heme group.


Asunto(s)
Proteínas Bacterianas/química , Hemo/química , Histidina/química , Proteínas de Plantas/química , Ingeniería de Proteínas , Protoporfirinas/química , Hemoglobinas Truncadas/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Chlamydomonas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Synechococcus/química , Synechocystis/química , Hemoglobinas Truncadas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA