RESUMEN
Gephebase is a manually-curated database compiling our accumulated knowledge of the genes and mutations that underlie natural, domesticated and experimental phenotypic variation in all Eukaryotes-mostly animals, plants and yeasts. Gephebase aims to compile studies where the genotype-phenotype association (based on linkage mapping, association mapping or a candidate gene approach) is relatively well supported. Human clinical traits and aberrant mutant phenotypes in laboratory organisms are not included and can be found in other databases (e.g. OMIM, OMIA, Monarch Initiative). Gephebase contains more than 1700 entries. Each entry corresponds to an allelic difference at a given gene and its associated phenotypic change(s) between two species or two individuals of the same species, and is enriched with molecular details, taxonomic information, and bibliographic information. Users can easily browse entries and perform searches at various levels using boolean operators (e.g. transposable elements, snakes, carotenoid content, Doebley). Data is exportable in spreadsheet format. This database allows to perform meta-analyses to extract global trends about the living world and the research fields. Gephebase should also help breeders, conservationists and others to identify promising target genes for crop improvement, parasite/pest control, bioconservation and genetic diagnostic. It is freely available at www.gephebase.org.
Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Eucariontes/genética , Estudios de Asociación Genética , Algoritmos , Alelos , Animales , Mapeo Cromosómico , Gráficos por Computador , Elementos Transponibles de ADN , Bases de Datos Factuales , Drosophila melanogaster , Ligamiento Genético , Humanos , Internet , Mutación , Programas Informáticos , Interfaz Usuario-ComputadorRESUMEN
Animals can be permanently attached to a substrate in terrestrial environments at certain stages of their development. Pupa adhesion has evolved multiple times in insects and is thought to maintain the animal in a place where it is not detectable by predators. Here, we investigate whether pupa adhesion in Drosophila can also protect the animal by preventing potential predators from detaching the pupa. We measured the adhesion of Drosophila species sampled from the same area and found that pupa adhesion varies among species, which can be explained by different glue production strategies. Then, we compared attached and manually detached pupae in both field and laboratory assays to investigate the role of pupa adhesion to prevent predation. First, we found that attached pupae remain onsite 30% more than detached pupae in the field after 3 days, probably because they are less predated. Second, we observed that attached pupae are less efficiently predated by ants in the laboratory: they are not carried back to the ant nest and more ants are needed to consume them onsite. Our results show that pupa adhesion can prevent the animal from being taken away by predators and is crucial for Drosophila fly survival.
Asunto(s)
Hormigas , Conducta Predatoria , Animales , Drosophila , Insectos , PupaRESUMEN
Phylogenetic relationships of 26 Phortica species were investigated based on DNA sequence data of two mitochondrial (ND2, COI) and one nuclear (28S rRNA) genes. Five monophyletic groups were recovered in the genus Phortica, of which three were established as new subgenera, Alloparadisa, Ashima, and Shangrila. The subgenus Allophortica was suggested as the most basal lineage in Phortica, followed by the lineage of P. helva + P. sobodo + P. varipes. The remaining Phortica species, most of Oriental distribution, formed a monophyletic group, and were subdivided into three lineages (i.e., the subgenera Ashima, Phortica, and Shangrila). The subgenera Shangrila and Phortica were suggested as sister taxa, and four clades were recovered in the subgenus Ashima. The result of reconstruction of ancestral distribution and estimation of divergence times indicates that, the ancestor of the genus Phortica restricted to Africa, its initial diversification was dated back to ca. 23 Mya (coinciding with the Oligocene/Miocene boundary); sympatric speciation and an Africa-to-Asia dispersal was proposed to account for the current distribution of Allophortica and the rest Phortica; most of the rest diversification of Phortica occurred in southern China, and the divergence between the African clade and its Oriental counterpart was suggested as a result of vicariance following a dispersal of their ancestral species from southern China to Africa.
Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Drosophilidae/genética , Filogenia , África , Animales , Asia , Secuencia de Bases , Teorema de Bayes , Drosophilidae/anatomía & histología , Drosophilidae/clasificación , Variación Genética , Geografía , Modelos Genéticos , Análisis de Secuencia de ADN , Factores de TiempoRESUMEN
The Zaprionus genus group comprises three drosophilid genera (Zaprionus, Phorticella and Samoaia) that are thought to be related to the Drosophila immigrans species group. We revised the phylogenetic relationships among the three genera and their placement within the subfamily Drosophilinae using one mitochondrial (COII) and one nuclear (Amyrel) gene. The Bayesian tree inferred from concatenated amino acid sequences of the two genes strongly suggests the polyphyly of the Zaprionus genus group and of each of the genera Zaprionus and Phorticella. Paraphyly of the D.immigrans species group was also shown here; the quadrilineata subgroup formed the sister clade to the genus Samoaia. These results suggest the necessity of taxonomic revisions for some relevant genera and species groups included within the genus Drosophila.
Asunto(s)
Drosophilidae/genética , Evolución Molecular , Filogenia , Animales , Núcleo Celular/genética , ADN Mitocondrial/genética , Drosophilidae/clasificación , Alineación de Secuencia , Análisis de Secuencia de ADN , Especificidad de la EspecieRESUMEN
Speciation genes are responsible for genetic incompatibilities in hybrids of incipient species and therefore participate in reproductive isolation leading to complete speciation. Hybrid males between Drosophila melanogaster females and D. simulans males die at late larval or prepupal stages due to a failure in chromosome condensation during mitosis. However a mutant male of D. simulans, named Lethal hybrid rescue (Lhr), produces viable hybrid males when crossed to females of D. melanogaster. Recently the Lhr gene has been proposed as corresponding to the CG18468 gene in D. melanogaster. However this identification relied on sequence characteristics more than on a precise mapping and the use of the GAL4/UAS system to drive the transgene in D. melanogaster might have increased the complexity of interaction. Thus here we propose an independent identification of the Lhr gene based on a more precise mapping and transgenic experiments in D. simulans. We have mapped the Lhr gene by using Single Nucleotide Polymorphisms (SNPs) and identified within the candidate region the gene homologous to CG18468 as the Lhr gene as it was previously reported. Transgenic experiments in D. simulans with the native promoter of CG18468 prove that it is the Lhr gene of D. simulans by inducing the lethality of the hybrid males.
Asunto(s)
Quimera/fisiología , Proteínas de Drosophila/genética , Drosophila/genética , Genes Letales , Reproducción/fisiología , Transgenes/fisiología , Animales , Animales Modificados Genéticamente , Mapeo Cromosómico , Cartilla de ADN/química , Drosophila/clasificación , Drosophila/crecimiento & desarrollo , Femenino , Masculino , Mutación , Fenotipo , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Retroelementos/genética , Especificidad de la Especie , Transformación GenéticaRESUMEN
A century ago a little fly with red eyes was first used for genetic studies. That insignificant fly, called at that time Drosophila ampelophila, revolutionized biology while becoming the model we know today under the name of Drosophila melanogaster. Since then its study has never ceased, but the field of interest has somewhat changed during the century. To caricature a little, today we essentially learn from Drosophila meetings that the fly has a brain! It is true that the fly is a tremendous model organism for neurobiology. But this fly is, in fact, an appropriate and recognized model for the whole of biology. Indeed, Drosophila meetings are exceptional opportunities to gather biologists of diverse backgrounds together. There we not only learn about the latest improvements in our field of interest, but surely appreciate learning another bit of biology. From this biological melting pot has emerged a culture very specific to the fly community. Thus besides neurobiology, cell biology and development, a diversity of other research fields exist; they all have their own place in the cultural and historical dimension of the "drosophila" model. Several communications from those diverse research fields were presented at the 8th Japanese Drosophila Research Conference (JDRC8) and are briefly covered here. We believe it more judicious to call the model "drosophila" without a capital initial, as the model has never really been limited to only the Drosophila genus. The vernacular name "drosophila" is currently used to designate any fly of the Drosophilidae family and we believe the term more appropriate than "small fruit fly" or "vinegar fly" to better include the species and ecological diversity of the model.