Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(35): e2114064119, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35994659

RESUMEN

Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.


Asunto(s)
Arabidopsis , Resistencia a la Enfermedad , Especificidad del Huésped , Nicotiana , Enfermedades de las Plantas , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/parasitología , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitología , Nicotiana/metabolismo , Nicotiana/parasitología , Técnicas del Sistema de Dos Híbridos
2.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34617878

RESUMEN

The Pectobacteriaceae family of important plant pathogens includes the genus Dickeya. There are currently 12 described species of Dickeya, although some are poorly characterized at the genomic level. Only two genomes of Dickeya paradisiaca, the type strain CFBP 4178T and strain Ech703, have previously been sequenced. Members of this species are mostly of tropical or subtropical origin. During an investigation of strains present in our laboratory collection we sequenced the atypical strain A3967, registered as CFBP 722, isolated from Solanum lycopersicum (tomato) in the South of France in 1965. The genome of strain A3967 shares digital DNA-DNA hybridization and average nucleotide identity (ANI) values of 68 and 96 %, respectively, with the D. paradisiaca type strain CFBP 4178T. However, ANI analysis showed that D. paradisiaca strains are significantly dissimilar to the other Dickeya species, such that less than one third of their genomes align to any other Dickeya genome. On phenotypic, phylogenetic and genomic grounds, we propose a reassignment of D. paradisiaca to the genus level, for which we propose the name Musicola gen. nov., with Musicola paradisiaca as the type species and CFBP 4178T (NCPPB 2511T) as the type strain. Phenotypic analysis showed differences between strain A3967T and CFBP 4178T, such as for the assimilation of melibiose, raffinose and myo-inositol. These results support the description of two novel species, namely Musicola paradisiaca comb. nov. and Musicola keenii sp. nov., with CFBP 4178T (NCPPB 2511T=LMG 2542T) and A3967T (CFBP 8732T=LMG 31880T) as the type strains, respectively.


Asunto(s)
Dickeya , Enterobacteriaceae/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Dickeya/clasificación , Francia , Solanum lycopersicum/microbiología , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
Genomics ; 112(6): 4242-4253, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32663607

RESUMEN

Shiga-toxigenic Escherichia coli (STEC) is often transmitted into food via fresh produce plants, where it can cause disease. To identify early interaction factors for STEC on spinach, a high-throughput positive-selection system was used. A bacterial artificial chromosome (BAC) clone library for isolate Sakai was screened in four successive rounds of short-term (2 h) interaction with spinach roots, and enriched loci identified by microarray. A Bayesian hierarchical model produced 115 CDS credible candidates, comprising seven contiguous genomic regions. Of the two candidate regions selected for functional assessment, the pO157 plasmid-encoded type two secretion system (T2SS) promoted interactions, while a chaperone-usher fimbrial gene cluster (loc6) did not. The T2SS promoted bacterial binding to spinach and appeared to involve the EtpD secretin protein. Furthermore, the T2SS genes, etpD and etpC, were expressed at a plant-relevant temperature of 18 °C, and etpD was expressed in planta by E. coli Sakai on spinach plants.


Asunto(s)
Escherichia coli O157/genética , Interacciones Microbiota-Huesped/genética , Sistemas de Secreción Tipo II/genética , Adhesinas Bacterianas/genética , Adhesión Bacteriana , Cromosomas Artificiales Bacterianos , Escherichia coli O157/aislamiento & purificación , Escherichia coli O157/metabolismo , Genes Bacterianos , Genómica , Mutación , Raíces de Plantas/microbiología , Plásmidos/genética , Spinacia oleracea/microbiología , Sistemas de Secreción Tipo II/metabolismo
4.
Int J Syst Evol Microbiol ; 70(4): 2440-2448, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32100697

RESUMEN

Pectobacterium strains isolated from potato stems in Finland, Poland and the Netherlands were subjected to polyphasic analyses to characterize their genomic and phenotypic features. Phylogenetic analysis based on 382 core proteins showed that the isolates clustered closest to Pectobacterium polaris but could be divided into two clades. Average nucleotide identity (ANI) analysis revealed that the isolates in one of the clades included the P. polaris type strain, whereas the second clade was at the border of the species P. polaris with a 96 % ANI value. In silico genome-to-genome comparisons between the isolates revealed values below 70%, patristic distances based on 1294 core proteins were at the level observed between closely related Pectobacterium species, and the two groups of bacteria differed in genome size, G+C content and results of amplified fragment length polymorphism and Biolog analyses. Comparisons between the genomes revealed that the isolates of the atypical group contained SPI-1-type Type III secretion island and genes coding for proteins known for toxic effects on nematodes or insects, and lacked many genes coding for previously characterized virulence determinants affecting rotting of plant tissue by soft rot bacteria. Furthermore, the atypical isolates could be differentiated from P. polaris by their low virulence, production of antibacterial metabolites and a citrate-negative phenotype. Based on the results of a polyphasic approach including genome-to-genome comparisons, biochemical and virulence assays, presented in this report, we propose delineation of the atypical isolates as a novel species Pectobacterium parvum, for which the isolate s0421T (CFBP 8630T=LMG 30828T) is suggested as a type strain.


Asunto(s)
Pectobacterium/clasificación , Filogenia , Solanum tuberosum/microbiología , Sistemas de Secreción Tipo III , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Finlandia , Países Bajos , Pectobacterium/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Tallos de la Planta/microbiología , Polonia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Virulencia
5.
Nucleic Acids Res ; 46(11): e68, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29608703

RESUMEN

The vast majority of bacterial genome sequencing has been performed using Illumina short reads. Because of the inherent difficulty of resolving repeated regions with short reads alone, only ∼10% of sequencing projects have resulted in a closed genome. The most common repeated regions are those coding for ribosomal operons (rDNAs), which occur in a bacterial genome between 1 and 15 times, and are typically used as sequence markers to classify and identify bacteria. Here, we exploit the genomic context in which rDNAs occur across taxa to improve assembly of these regions relative to de novo sequencing by using the conserved nature of rDNAs across taxa and the uniqueness of their flanking regions within a genome. We describe a method to construct targeted pseudocontigs generated by iteratively assembling reads that map to a reference genome's rDNAs. These pseudocontigs are then used to more accurately assemble the newly sequenced chromosome. We show that this method, implemented as riboSeed, correctly bridges across adjacent contigs in bacterial genome assembly and, when used in conjunction with other genome polishing tools, can assist in closure of a genome.


Asunto(s)
ADN Bacteriano/genética , ADN Ribosómico/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Klebsiella pneumoniae/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Mapeo Cromosómico/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos
6.
Metabolomics ; 15(10): 125, 2019 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-31522294

RESUMEN

BACKGROUND: A lack of transparency and reporting standards in the scientific community has led to increasing and widespread concerns relating to reproduction and integrity of results. As an omics science, which generates vast amounts of data and relies heavily on data science for deriving biological meaning, metabolomics is highly vulnerable to irreproducibility. The metabolomics community has made substantial efforts to align with FAIR data standards by promoting open data formats, data repositories, online spectral libraries, and metabolite databases. Open data analysis platforms also exist; however, they tend to be inflexible and rely on the user to adequately report their methods and results. To enable FAIR data science in metabolomics, methods and results need to be transparently disseminated in a manner that is rapid, reusable, and fully integrated with the published work. To ensure broad use within the community such a framework also needs to be inclusive and intuitive for both computational novices and experts alike. AIM OF REVIEW: To encourage metabolomics researchers from all backgrounds to take control of their own data science, mould it to their personal requirements, and enthusiastically share resources through open science. KEY SCIENTIFIC CONCEPTS OF REVIEW: This tutorial introduces the concept of interactive web-based computational laboratory notebooks. The reader is guided through a set of experiential tutorials specifically targeted at metabolomics researchers, based around the Jupyter Notebook web application, GitHub data repository, and Binder cloud computing platform.


Asunto(s)
Nube Computacional , Ciencia de los Datos , Metabolómica , Programas Informáticos , Animales , Humanos
7.
Brief Bioinform ; 14(2): 193-202, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22445902

RESUMEN

The advent of second-generation sequencing (2GS) has provided a range of significant new challenges for the visualization of sequence assemblies. These include the large volume of data being generated, short-read lengths and different data types and data formats associated with the diversity of new sequencing technologies. This article illustrates how Tablet-a high-performance graphical viewer for visualization of 2GS assemblies and read mappings-plays an important role in the analysis of these data. We present Tablet, and through a selection of use cases, demonstrate its value in quality assurance and scientific discovery, through features such as whole-reference coverage overviews, variant highlighting, paired-end read mark-up, GFF3-based feature tracks and protein translations. We discuss the computing and visualization techniques utilized to provide a rich and responsive graphical environment that enables users to view a range of file formats with ease. Tablet installers can be freely downloaded from http://bioinf.hutton.ac.uk/tablet in 32 or 64-bit versions for Windows, OS X, Linux or Solaris. For further details on the Tablet, contact tablet@hutton.ac.uk.


Asunto(s)
Gráficos por Computador , Presentación de Datos , Bases de Datos Genéticas/estadística & datos numéricos , Animales , Biología Computacional , Genómica/estadística & datos numéricos , Secuenciación de Nucleótidos de Alto Rendimiento/estadística & datos numéricos , Humanos , Internet , Análisis de Secuencia/estadística & datos numéricos , Programas Informáticos
8.
PLoS Pathog ; 9(10): e1003670, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24130484

RESUMEN

The potato late blight pathogen Phytophthora infestans secretes an array of effector proteins thought to act in its hosts by disarming defences and promoting pathogen colonisation. However, little is known about the host targets of these effectors and how they are manipulated by the pathogen. This work describes the identification of two putative membrane-associated NAC transcription factors (TF) as the host targets of the RxLR effector PITG_03192 (Pi03192). The effector interacts with NAC Targeted by Phytophthora (NTP) 1 and NTP2 at the endoplasmic reticulum (ER) membrane, where these proteins are localised. Transcripts of NTP1 and NTP2 rapidly accumulate following treatment with culture filtrate (CF) from in vitro grown P. infestans, which acts as a mixture of Phytophthora PAMPs and elicitors, but significantly decrease during P. infestans infection, indicating that pathogen activity may prevent their up-regulation. Silencing of NTP1 or NTP2 in the model host plant Nicotiana benthamiana increases susceptibility to P. infestans, whereas silencing of Pi03192 in P. infestans reduces pathogenicity. Transient expression of Pi03192 in planta restores pathogenicity of the Pi03192-silenced line. Moreover, colonisation by the Pi03192-silenced line is significantly enhanced on N. benthamiana plants in which either NTP1 or NTP2 have been silenced. StNTP1 and StNTP2 proteins are released from the ER membrane following treatment with P. infestans CF and accumulate in the nucleus, after which they are rapidly turned over by the 26S proteasome. In contrast, treatment with the defined PAMP flg22 fails to up-regulate NTP1 and NTP2, or promote re-localisation of their protein products to the nucleus, indicating that these events follow perception of a component of CF that appears to be independent of the FLS2/flg22 pathway. Importantly, Pi03192 prevents CF-triggered re-localisation of StNTP1 and StNTP2 from the ER into the nucleus, revealing a novel effector mode-of-action to promote disease progression.


Asunto(s)
Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Nicotiana/metabolismo , Phytophthora infestans/metabolismo , Enfermedades de las Plantas , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular/genética , Núcleo Celular/genética , Retículo Endoplásmico/genética , Silenciador del Gen , Phytophthora infestans/genética , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/microbiología , Factores de Transcripción/genética
10.
Plant J ; 76(3): 530-44, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23937694

RESUMEN

RenSeq is a NB-LRR (nucleotide binding-site leucine-rich repeat) gene-targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB-LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB-LRRs and can be accessed through a genome browser that we provide. We compared these NB-LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ~80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum 'Heinz 1706' extended the NB-LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co-segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi-ber2) and S. ruiz-ceballosii (Rpi-rzc1), we were able to apply RenSeq successfully to identify markers that co-segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy-to-adapt Galaxy pipelines.


Asunto(s)
Anotación de Secuencia Molecular/métodos , Análisis de Secuencia de ADN/métodos , Mapeo Cromosómico , Productos Agrícolas/genética , Genes de Plantas , Familia de Multigenes , Phytophthora infestans/genética , Inmunidad de la Planta/genética , Polimorfismo de Nucleótido Simple/genética , Solanum tuberosum
11.
Int J Syst Evol Microbiol ; 64(Pt 3): 768-774, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24225027

RESUMEN

Pectinolytic bacteria have been recently isolated from diseased potato plants exhibiting blackleg and slow wilt symptoms found in a number of European countries and Israel. These Gram-reaction-negative, motile, rods were identified as belonging to the genus Dickeya, previously the Pectobacterium chrysanthemi complex (Erwinia chrysanthemi), on the basis of production of a PCR product with the pelADE primers, 16S rRNA gene sequence analysis, fatty acid methyl esterase analysis, the production of phosphatases and the ability to produce indole and acids from α-methylglucoside. Differential physiological assays used previously to differentiate between strains of E. chrysanthemi, showed that these isolates belonged to biovar 3. Eight of the isolates, seven from potato and one from hyacinth, were analysed together with 21 reference strains representing all currently recognized taxa within the genus Dickeya. The novel isolates formed a distinct genetic clade in multilocus sequence analysis (MLSA) using concatenated sequences of the intergenic spacer (IGS), as well as dnaX, recA, dnaN, fusA, gapA, purA, rplB, rpoS and gyrA. Characterization by whole-cell MALDI-TOF mass spectrometry, pulsed field gel electrophoresis after digestion of whole-genome DNA with rare-cutting restriction enzymes, average nucleotide identity analysis and DNA-DNA hybridization studies, showed that although related to Dickeya dadantii, these isolates represent a novel species within the genus Dickeya, for which the name Dickeya solani sp. nov. (type strain IPO 2222(T) = LMG25993(T) = NCPPB4479(T)) is proposed.


Asunto(s)
Enterobacteriaceae/clasificación , Pectinas/metabolismo , Filogenia , Solanum tuberosum/microbiología , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Europa (Continente) , Ácidos Grasos/química , Genes Bacterianos , Indoles/metabolismo , Israel , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Hibridación de Ácido Nucleico , Enfermedades de las Plantas/microbiología , ARN Ribosómico 16S/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
12.
Biosci Rep ; 44(1)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38131184

RESUMEN

The exchange of ammonium across cellular membranes is a fundamental process in all domains of life and is facilitated by the ubiquitous Amt/Mep/Rh transporter superfamily. Remarkably, despite a high structural conservation in all domains of life, these proteins have gained various biological functions during evolution. It is tempting to hypothesise that the physiological functions gained by these proteins may be explained at least in part by differences in the energetics of their translocation mechanisms. Therefore, in this review, we will explore our current knowledge of energetics of the Amt/Mep/Rh family, discuss variations in observations between different organisms, and highlight some technical drawbacks which have hampered effects at mechanistic characterisation. Through the review, we aim to provide a comprehensive overview of current understanding of the mechanism of transport of this unique and extraordinary Amt/Mep/Rh superfamily of ammonium transporters.


Asunto(s)
Compuestos de Amonio , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico
13.
FEBS J ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265636

RESUMEN

Although ammonium is the preferred nitrogen source for microbes and plants, in animal cells it is a toxic product of nitrogen metabolism that needs to be excreted. Thus, ammonium movement across biological membranes, whether for uptake or excretion, is a fundamental and ubiquitous biological process catalysed by the superfamily of the Amt/Mep/Rh transporters. A remarkable feature of the Amt/Mep/Rh family is that they are ubiquitous and, despite sharing low amino acid sequence identity, are highly structurally conserved. Despite sharing a common structure, these proteins have become involved in a diverse range of physiological process spanning all domains of life, with reports describing their involvement in diverse biological processes being published regularly. In this context, we exhaustively present their range of biological roles across the domains of life and after explore current hypotheses concerning their evolution to help to understand how and why the conserved structure fulfils diverse physiological functions.

14.
Nature ; 450(7166): 115-8, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17914356

RESUMEN

Bacterial, oomycete and fungal plant pathogens establish disease by translocation of effector proteins into host cells, where they may directly manipulate host innate immunity. In bacteria, translocation is through the type III secretion system, but analogous processes for effector delivery are uncharacterized in fungi and oomycetes. Here we report functional analyses of two motifs, RXLR and EER, present in translocated oomycete effectors. We use the Phytophthora infestans RXLR-EER-containing protein Avr3a as a reporter for translocation because it triggers RXLR-EER-independent hypersensitive cell death following recognition within plant cells that contain the R3a resistance protein. We show that Avr3a, with or without RXLR-EER motifs, is secreted from P. infestans biotrophic structures called haustoria, demonstrating that these motifs are not required for targeting to haustoria or for secretion. However, following replacement of Avr3a RXLR-EER motifs with alanine residues, singly or in combination, or with residues KMIK-DDK--representing a change that conserves physicochemical properties of the protein--P. infestans fails to deliver Avr3a or an Avr3a-GUS fusion protein into plant cells, demonstrating that these motifs are required for translocation. We show that RXLR-EER-encoding genes are transcriptionally upregulated during infection. Bioinformatic analysis identifies 425 potential genes encoding secreted RXLR-EER class proteins in the P. infestans genome. Identification of this class of proteins provides unparalleled opportunities to determine how oomycetes manipulate hosts to establish infection.


Asunto(s)
Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Nicotiana/metabolismo , Phytophthora/metabolismo , Señales de Clasificación de Proteína , Solanum tuberosum/metabolismo , Alanina/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Biología Computacional , Pectobacterium/genética , Phytophthora/química , Transporte de Proteínas , Pseudomonas syringae/genética , Solanum tuberosum/microbiología , Nicotiana/microbiología
15.
Microb Genom ; 9(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37578822

RESUMEN

Carbohydrate active enzymes (CAZymes) are pivotal in biological processes including energy metabolism, cell structure maintenance, signalling, and pathogen recognition. Bioinformatic prediction and mining of CAZymes improves our understanding of these activities and enables discovery of candidates of interest for industrial biotechnology, particularly the processing of organic waste for biofuel production. CAZy (www.cazy.org) is a high-quality, manually curated, and authoritative database of CAZymes that is often the starting point for these analyses. Automated querying and integration of CAZy data with other public datasets would constitute a powerful resource for mining and exploring CAZyme diversity. However, CAZy does not itself provide methods to automate queries, or integrate annotation data from other sources (except by following hyperlinks) to support further analysis. To overcome these limitations we developed cazy_webscraper, a command-line tool that retrieves data from CAZy and other online resources to build a local, shareable and reproducible database that augments and extends the authoritative CAZy database. cazy_webscraper's integration of curated CAZyme annotations with their corresponding protein sequences, up-to-date taxonomy assignments, and protein structure data facilitates automated large-scale and targeted bioinformatic CAZyme family analysis and candidate screening. This tool has found widespread uptake in the community, with over 35 000 downloads (from April 2021 to June 2023). We demonstrate the use and application of cazy_webscraper to: (i) augment, update and correct CAZy database accessions; (ii) explore the taxonomic distribution of CAZymes recorded in CAZy, identifying under-represented taxa and unusual CAZy class distributions; and (iii) investigate three CAZymes having potential biotechnological application for degradation of biomass, but lacking a representative structure in the PDB database. We describe in general how cazy_webscraper facilitates functional, structural and evolutionary studies to aid identification of candidate enzymes for further characterization, and specifically note that CAZy provides supporting evidence for recent expansion of the Auxiliary Activities (AA) CAZy family in eukaryotes, consistent with functions potentially specific to eukaryotic lifestyles.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Bases de Datos Genéticas , Esterasas/química , Esterasas/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Estructura Secundaria de Proteína
16.
PeerJ ; 11: e15648, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37609440

RESUMEN

THAPBI PICT is an open source software pipeline for metabarcoding analysis of Illumina paired-end reads, including cases of multiplexing where more than one amplicon is amplified per DNA sample. Initially a Phytophthora ITS1 Classification Tool (PICT), we demonstrate using worked examples with our own and public data sets how, with appropriate primer settings and a custom database, it can be applied to other amplicons and organisms, and used for reanalysis of existing datasets. The core dataflow of the implementation is (i) data reduction to unique marker sequences, often called amplicon sequence variants (ASVs), (ii) dynamic thresholds for discarding low abundance sequences to remove noise and artifacts (rather than error correction by default), before (iii) classification using a curated reference database. The default classifier assigns a label to each query sequence based on a database match that is either perfect, or a single base pair edit away (substitution, deletion or insertion). Abundance thresholds for inclusion can be set by the user or automatically using per-batch negative or synthetic control samples. Output is designed for practical interpretation by non-specialists and includes a read report (ASVs with classification and counts per sample), sample report (samples with counts per species classification), and a topological graph of ASVs as nodes with short edit distances as edges. Source code available from https://github.com/peterjc/thapbi-pict/ with documentation including installation instructions.


Asunto(s)
Anatomía Regional , Phytophthora , Artefactos , Cultura , Bases de Datos Factuales
17.
Mol Plant Microbe Interact ; 25(4): 523-33, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22204647

RESUMEN

Antimicrobial peptides constitute an important factor in the defense of plants against pathogens, and bacterial resistance to these peptides have previously been shown to be an important virulence factor in Dickeya dadantii, the causal agent of soft-rot disease of vegetables. In order to understand the bacterial response to antimicrobial peptides, a transcriptional microarray analysis was performed upon treatment with sub-lethal concentration of thionins, a widespread plant peptide. In all, 36 genes were found to be overexpressed, and were classified according to their deduced function as i) transcriptional regulators, ii) transport, and iii) modification of the bacterial membrane. One gene encoding a uricase was found to be repressed. The majority of these genes are known to be under the control of the PhoP/PhoQ system. Five genes representing the different functions induced were selected for further analysis. The results obtained indicate that the presence of antimicrobial peptides induces a complex response which includes peptide-specific elements and general stress-response elements contributing differentially to the virulence in different hosts.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Péptidos Catiónicos Antimicrobianos/metabolismo , Enterobacteriaceae/patogenicidad , Perfilación de la Expresión Génica , Genoma Bacteriano , Mutación , Péptidos Cíclicos , Plantas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma , Virulencia
18.
BMC Genomics ; 13: 75, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22336098

RESUMEN

BACKGROUND: The potato genome sequence derived from the Solanum tuberosum Group Phureja clone DM1-3 516 R44 provides unparalleled insight into the genome composition and organisation of this important crop. A key class of genes that comprises the vast majority of plant resistance (R) genes contains a nucleotide-binding and leucine-rich repeat domain, and is collectively known as NB-LRRs. RESULTS: As part of an effort to accelerate the process of functional R gene isolation, we performed an amino acid motif based search of the annotated potato genome and identified 438 NB-LRR type genes among the ~39,000 potato gene models. Of the predicted genes, 77 contain an N-terminal toll/interleukin 1 receptor (TIR)-like domain, and 107 of the remaining 361 non-TIR genes contain an N-terminal coiled-coil (CC) domain. Physical map positions were established for 370 predicted NB-LRR genes across all 12 potato chromosomes. The majority of NB-LRRs are physically organised within 63 identified clusters, of which 50 are homogeneous in that they contain NB-LRRs derived from a recent common ancestor. CONCLUSIONS: By establishing the phylogenetic and positional relationship of potato NB-LRRs, our analysis offers significant insight into the evolution of potato R genes. Furthermore, the data provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from Solanum species.


Asunto(s)
Proteínas de Plantas/genética , Solanum tuberosum/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Mapeo Cromosómico , Análisis por Conglomerados , Genoma de Planta , Leucina/química , Datos de Secuencia Molecular , Proteínas de Plantas/análisis , Solanum tuberosum/clasificación
19.
Front Microbiol ; 13: 887310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663905

RESUMEN

Genomics has put prokaryotic rank-based taxonomy on a solid phylogenetic foundation. However, most taxonomic ranks were set long before the advent of DNA sequencing and genomics. In this concept paper, we thus ask the following question: should prokaryotic classification schemes besides the current phylum-to-species ranks be explored, developed, and incorporated into scientific discourse? Could such alternative schemes provide better solutions to the basic need of science and society for which taxonomy was developed, namely, precise and meaningful identification? A neutral genome-similarity based framework is then described that could allow alternative classification schemes to be explored, compared, and translated into each other without having to choose only one as the gold standard. Classification schemes could thus continue to evolve and be selected according to their benefits and based on how well they fulfill the need for prokaryotic identification.

20.
Microb Genom ; 8(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35775972

RESUMEN

Actinobacteria is an ancient phylum of Gram-positive bacteria with a characteristic high GC content to their DNA. The ActinoBase Wiki is focused on the filamentous actinobacteria, such as Streptomyces species, and the techniques and growth conditions used to study them. These organisms are studied because of their complex developmental life cycles and diverse specialised metabolism which produces many of the antibiotics currently used in the clinic. ActinoBase is a community effort that provides valuable and freely accessible resources, including protocols and practical information about filamentous actinobacteria. It is aimed at enabling knowledge exchange between members of the international research community working with these fascinating bacteria. ActinoBase is an anchor platform that underpins worldwide efforts to understand the ecology, biology and metabolic potential of these organisms. There are two key differences that set ActinoBase apart from other Wiki-based platforms: [1] ActinoBase is specifically aimed at researchers working on filamentous actinobacteria and is tailored to help users overcome challenges working with these bacteria and [2] it provides a freely accessible resource with global networking opportunities for researchers with a broad range of experience in this field.


Asunto(s)
Actinobacteria , Streptomyces , Actinobacteria/genética , Antibacterianos , Streptomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA