Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Annu Rev Immunol ; 38: 705-725, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32340571

RESUMEN

The discovery of CD4+ T cell subset-defining master transcription factors and framing of the Th1/Th2 paradigm ignited the CD4+ T cell field. Advances in in vivo experimental systems, however, have revealed that more complex lineage-defining transcriptional networks direct CD4+ T cell differentiation in the lymphoid organs and tissues. This review focuses on the layers of fate decisions that inform CD4+ T cell differentiation in vivo. Cytokine production by antigen-presenting cells and other innate cells influences the CD4+ T cell effector program [e.g., T helper type 1 (Th1), Th2, Th17]. Signals downstream of the T cell receptor influence whether individual clones bearing hallmarks of this effector program become T follicular helper cells, supporting development of B cells expressing specific antibody isotypes, or T effector cells, which activate microbicidal innate cells in tissues. These bifurcated, parallel axes allow CD4+ T cells to augment their particular effector program and prevent disease.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/inmunología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/citología , Diferenciación Celular/genética , Citocinas/metabolismo , Humanos , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Células Th2/inmunología , Células Th2/metabolismo
2.
Cell ; 185(9): 1588-1601.e14, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35413241

RESUMEN

Immune memory is tailored by cues that lymphocytes perceive during priming. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic created a situation in which nascent memory could be tracked through additional antigen exposures. Both SARS-CoV-2 infection and vaccination induce multifaceted, functional immune memory, but together, they engender improved protection from disease, termed hybrid immunity. We therefore investigated how vaccine-induced memory is shaped by previous infection. We found that following vaccination, previously infected individuals generated more SARS-CoV-2 RBD-specific memory B cells and variant-neutralizing antibodies and a distinct population of IFN-γ and IL-10-expressing memory SARS-CoV-2 spike-specific CD4+ T cells than previously naive individuals. Although additional vaccination could increase humoral memory in previously naive individuals, it did not recapitulate the distinct CD4+ T cell cytokine profile observed in previously infected subjects. Thus, imprinted features of SARS-CoV-2-specific memory lymphocytes define hybrid immunity.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/inmunología , Humanos , Inmunidad Humoral , Glicoproteína de la Espiga del Coronavirus , Linfocitos T
3.
Cell ; 184(1): 169-183.e17, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33296701

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is causing a global pandemic, and cases continue to rise. Most infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that could contribute to immunity. We performed a longitudinal assessment of individuals recovered from mild COVID-19 to determine whether they develop and sustain multifaceted SARS-CoV-2-specific immunological memory. Recovered individuals developed SARS-CoV-2-specific immunoglobulin (IgG) antibodies, neutralizing plasma, and memory B and memory T cells that persisted for at least 3 months. Our data further reveal that SARS-CoV-2-specific IgG memory B cells increased over time. Additionally, SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral function: memory T cells secreted cytokines and expanded upon antigen re-encounter, whereas memory B cells expressed receptors capable of neutralizing virus when expressed as monoclonal antibodies. Therefore, mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks of antiviral immunity.


Asunto(s)
COVID-19/inmunología , COVID-19/fisiopatología , Memoria Inmunológica , SARS-CoV-2/fisiología , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , COVID-19/sangre , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2/química , Índice de Severidad de la Enfermedad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Linfocitos T/inmunología
4.
J Exp Med ; 220(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37698553

RESUMEN

CD4+ lung-resident memory T cells (TRM) generated in response to influenza infection confer effective protection against subsequent viral exposures. Whether these cells can be altered by environmental antigens and cytokines released during heterologous, antigen-independent immune responses is currently unclear. We therefore investigated how influenza-specific CD4+ Th1 TRM in the lung are impacted by a subsequent Th2-inducing respiratory house dust mite (HDM) exposure. Although naïve influenza-specific CD4+ T cells in the lymph nodes do not respond to HDM, influenza-specific CD4+ TRM in the lungs do respond to a subsequent allergen exposure by decreasing expression of the transcription factor T-bet. This functional alteration is associated with decreased IFN-γ production upon restimulation and improved disease outcomes following heterosubtypic influenza challenge. Further investigation revealed that ST2 signaling in CD4+ T cells during allergic challenge is necessary to induce these changes in lung-resident influenza-specific CD4+ TRM. Thus, heterologous antigen exposure or ST2-signaling can drive persistent changes in CD4+ Th1 TRM populations and impact protection upon reinfection.


Asunto(s)
Gripe Humana , Animales , Humanos , Proteína 1 Similar al Receptor de Interleucina-1 , Linfocitos T CD4-Positivos , Células TH1 , Pyroglyphidae , Alérgenos
5.
J Exp Med ; 218(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34160551

RESUMEN

Respiratory viral infections present a major threat to global health and prosperity. Over the past century, several have developed into crippling pandemics, including the SARS-CoV-2 virus. Although the generation of neutralizing serum antibodies in response to natural immunity and vaccination are considered to be hallmarks of viral immune protection, antibodies from long-lived plasma cells are subject to immune escape from heterologous clades of zoonotic, recombined, or mutated viruses. Local immunity in the lung can be generated through resident memory immune subsets that rapidly respond to secondary infection and protect from heterologous infection. Although many immune cells are required to achieve the phenomenon of resident memory, herein we highlight the pleiotropic functions of CD4 tissue resident memory T cells in the lung and discuss the implications of resident memory for vaccine design.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Memoria Inmunológica , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/virología , Animales , Humanos , SARS-CoV-2/fisiología , Especificidad de la Especie , Vacunación
6.
Transplant Direct ; 7(6): e705, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34056080

RESUMEN

BACKGROUND: In kidney transplantation, long-term allograft acceptance in cynomolgus macaques was achieved using a mixed-chimerism protocol based on the clinically available reagents, rabbit anti-thymocyte globulin (ATG), and belatacept. Here, we have tested the same protocol in cynomolgus macaques transplanted with fully allogeneic lung grafts. METHODS: Five cynomolgus macaques underwent left orthotopic lung transplantation. Initial immunosuppression included equine ATG and anti-IL6RmAb induction, followed by triple-drug immunosuppression for 4 mo. Post-transplant, a nonmyeloablative conditioning regimen was applied, including total body and thymic irradiation. Rabbit ATG, belatacept, anti-IL6RmAb, and donor bone marrow transplantation (DBMT) were given, in addition to a 28-d course of cyclosporine. All immunosuppressant drugs were stopped on day 29 after DBMT. RESULTS: One monkey rejected its lung before DBMT due to AMR, after developing donor-specific antibodies. Two monkeys developed fatal post-transplant lymphoproliferative disorder, and both monkeys had signs of cellular rejection in their allografts upon autopsy. The remaining 2 monkeys showed severe cellular rejection on days 42 and 70 post-DBMT. Cytokine analysis suggested higher levels of pro-inflammatory markers in the lung transplant cohort, as compared to kidney recipients. CONCLUSION: Although the clinically applicable protocol showed success in kidney transplantation, the study did not show long-term survival in a lung transplant model, highlighting the organ-specific differences in tolerance induction.

7.
medRxiv ; 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32817957

RESUMEN

The recently emerged SARS-CoV-2 virus is currently causing a global pandemic and cases continue to rise. The majority of infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that might contribute to herd immunity. Thus, we performed a longitudinal assessment of individuals recovered from mildly symptomatic COVID-19 to determine if they develop and sustain immunological memory against the virus. We found that recovered individuals developed SARS-CoV-2-specific IgG antibody and neutralizing plasma, as well as virus-specific memory B and T cells that not only persisted, but in some cases increased numerically over three months following symptom onset. Furthermore, the SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral immunity: memory T cells secreted IFN-γ and expanded upon antigen re-encounter, while memory B cells expressed receptors capable of neutralizing virus when expressed as antibodies. These findings demonstrate that mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks associated with antiviral protective immunity.

8.
Res Sq ; 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32818218

RESUMEN

The recently emerged SARS-CoV-2 virus is currently causing a global pandemic and cases continue to rise. The majority of infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that might contribute to herd immunity. Thus, we performed a longitudinal assessment of individuals recovered from mildly symptomatic COVID-19 to determine if they develop and sustain immunological memory against the virus. We found that recovered individuals developed SARS-CoV-2-specific IgG antibody and neutralizing plasma, as well as virus-specific memory B and T cells that not only persisted, but in some cases increased numerically over three months following symptom onset. Furthermore, the SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral immunity: memory T cells secreted IFN-γ and expanded upon antigen re-encounter, while memory B cells expressed receptors capable of neutralizing virus when expressed as antibodies. These findings demonstrate that mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks associated with antiviral protective immunity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA