Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203380

RESUMEN

The ability of materials to adhere bacteria on their surface is one of the most important aspects of their development and application in bioengineering. In this work, the effect of the properties of films and electrospun scaffolds made of composite materials based on biosynthetic poly(3-hydroxybutyrate) (PHB) with the addition of magnetite nanoparticles (MNP) and their complex with graphene oxide (MNP/GO) on the adhesion of E. coli and L. fermentum under the influence of a low-frequency magnetic field and without it was investigated. The physicochemical properties (crystallinity; surface hydrophilicity) of the materials were investigated by X-ray structural analysis, differential scanning calorimetry and "drop deposition" methods, and their surface topography was studied by scanning electron and atomic force microscopy. Crystal violet staining made it possible to reveal differences in the surface charge value and to study the adhesion of bacteria to it. It was shown that the differences in physicochemical properties of materials and the manifestation of magnetoactive properties of materials have a multidirectional effect on the adhesion of model microorganisms. Compared to pure PHB, the adhesion of E. coli to PHB-MNP/GO, and for L. fermentum to both composite materials, was higher. In the magnetic field, the adhesion of E. coli increased markedly compared to PHB-MNP/GO, whereas the effect on the adhesion of L. fermentum was reversed and was only evident in samples with PHB-MNP. Thus, the resultant factors enhancing and impairing the substrate binding of Gram-negative E. coli and Gram-positive L. fermentum turned out to be multidirectional, as they probably have different sensitivity to them. The results obtained will allow for the development of materials with externally controlled adhesion of bacteria to them for biotechnology and medicine.


Asunto(s)
Limosilactobacillus fermentum , Nanopartículas de Magnetita , Polihidroxibutiratos , Ácido 3-Hidroxibutírico , Escherichia coli , Campos Magnéticos
2.
ACS Appl Mater Interfaces ; 16(42): 56555-56579, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39377758

RESUMEN

Millions of people worldwide suffer from musculoskeletal damage, thus using the largest proportion of rehabilitation services. The limited self-regenerative capacity of bone and cartilage tissues necessitates the development of functional biomaterials. Magnetoactive materials are a promising solution due to clinical safety and deep tissue penetration of magnetic fields (MFs) without attenuation and tissue heating. Herein, electrospun microfibrous scaffolds were developed based on piezoelectric poly(3-hydroxybutyrate) (PHB) and composite magnetic nanofillers [magnetite with graphene oxide (GO) or reduced GO]. The scaffolds' morphology, structure, mechanical properties, surface potential, and piezoelectric response were systematically investigated. Furthermore, a complex mechanism of enzymatic biodegradation of these scaffolds is proposed that involves (i) a release of polymer crystallites, (ii) crystallization of the amorphous phase, and (iii) dissolution of the amorphous phase. Incorporation of Fe3O4, Fe3O4-GO, or Fe3O4-rGO accelerated the biodegradation of PHB scaffolds owing to pores on the surface of composite fibers and the enlarged content of polymer amorphous phase in the composite scaffolds. Six-month biodegradation caused a reduction in surface potential (1.5-fold) and in a vertical piezoresponse (3.5-fold) of the Fe3O4-GO scaffold because of a decrease in the PHB ß-phase content. In vitro assays in the absence of an MF showed a significantly more pronounced mesenchymal stem cell proliferation on composite magnetic scaffolds compared to the neat scaffold, whereas in an MF (68 mT, 0.67 Hz), cell proliferation was not statistically significantly different when all the studied scaffolds were compared. The PHB/Fe3O4-GO scaffold was implanted into femur bone defects in rats, resulting in successful bone repair after nonperiodic magnetic stimulation (200 mT, 0.04 Hz) owing to a synergetic influence of increased surface roughness, the presence of hydrophilic groups near the surface, and magnetoelectric and magnetomechanical effects of the material.


Asunto(s)
Grafito , Hidroxibutiratos , Campos Magnéticos , Osteogénesis , Poliésteres , Prohibitinas , Andamios del Tejido , Andamios del Tejido/química , Animales , Grafito/química , Hidroxibutiratos/química , Poliésteres/química , Ratas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ingeniería de Tejidos , Materiales Biocompatibles/química , Proliferación Celular , Polihidroxibutiratos
3.
ACS Omega ; 7(45): 41392-41411, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406497

RESUMEN

This is a comprehensive study on the reinforcement of electrospun poly(3-hydroxybutyrate) (PHB) scaffolds with a composite filler of magnetite-reduced graphene oxide (Fe3O4-rGO). The composite filler promoted the increase of average fiber diameters and decrease of the degree of crystallinity of hybrid scaffolds. The decrease in the fiber diameter enhanced the ductility and mechanical strength of scaffolds. The surface electric potential of PHB/Fe3O4-rGO composite scaffolds significantly increased with increasing fiber diameter owing to a greater number of polar functional groups. The changes in the microfiber diameter did not have any influence on effective piezoresponses of composite scaffolds. The Fe3O4-rGO filler imparted high saturation magnetization (6.67 ± 0.17 emu/g) to the scaffolds. Thus, magnetic PHB/Fe3O4-rGO composite scaffolds both preserve magnetic properties and provide a piezoresponse, whereas varying the fiber diameter offers control over ductility and surface electric potential.

4.
Polymers (Basel) ; 14(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35160518

RESUMEN

Novel hybrid magnetoactive composite scaffolds based on poly(3-hydroxybutyrate) (PHB), gelatin, and magnetite (Fe3O4) were fabricated by electrospinning. The morphology, structure, phase composition, and magnetic properties of composite scaffolds were studied. Fabrication procedures of PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the formation of both core-shell and ribbon-shaped structure of the fibers. In case of hybrid PHB/gelatin/Fe3O4 scaffolds submicron-sized Fe3O4 particles were observed in the surface layers of the fibers. The X-ray photoelectron spectroscopy results allowed the presence of gelatin on the fiber surface (N/C ratio-0.11) to be revealed. Incubation of the composite scaffolds in saline for 3 h decreased the amount of gelatin on the surface by more than ~75%. The differential scanning calorimetry results obtained for pure PHB scaffolds revealed a characteristic melting peak at 177.5 °C. The presence of gelatin in PHB/gelatin and PHB/gelatin/Fe3O4 scaffolds resulted in the decrease in melting temperature to 168-169 °C in comparison with pure PHB scaffolds due to the core-shell structure of the fibers. Hybrid scaffolds also demonstrated a decrease in crystallinity from 52.3% (PHB) to 16.9% (PHB/gelatin) and 9.2% (PHB/gelatin/Fe3O4). All the prepared scaffolds were non-toxic and saturation magnetization of the composite scaffolds with magnetite was 3.27 ± 0.22 emu/g, which makes them prospective candidates for usage in biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA