Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Biol ; 18(11): e3000902, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33201874

RESUMEN

Coordinated development of muscles, tendons, and their attachment sites ensures emergence of functional musculoskeletal units that are adapted to diverse anatomical demands among different species. How these different tissues are patterned and functionally assembled during embryogenesis is poorly understood. Here, we investigated the morphogenesis of extraocular muscles (EOMs), an evolutionary conserved cranial muscle group that is crucial for the coordinated movement of the eyeballs and for visual acuity. By means of lineage analysis, we redefined the cellular origins of periocular connective tissues interacting with the EOMs, which do not arise exclusively from neural crest mesenchyme as previously thought. Using 3D imaging approaches, we established an integrative blueprint for the EOM functional unit. By doing so, we identified a developmental time window in which individual EOMs emerge from a unique muscle anlage and establish insertions in the sclera, which sets these muscles apart from classical muscle-to-bone type of insertions. Further, we demonstrate that the eyeballs are a source of diffusible all-trans retinoic acid (ATRA) that allow their targeting by the EOMs in a temporal and dose-dependent manner. Using genetically modified mice and inhibitor treatments, we find that endogenous local variations in the concentration of retinoids contribute to the establishment of tendon condensations and attachment sites that precede the initiation of muscle patterning. Collectively, our results highlight how global and site-specific programs are deployed for the assembly of muscle functional units with precise definition of muscle shapes and topographical wiring of their tendon attachments.


Asunto(s)
Músculos Oculomotores/embriología , Músculos Oculomotores/crecimiento & desarrollo , Tretinoina/metabolismo , Animales , Tejido Conectivo/fisiología , Desarrollo Embrionario , Ojo , Imagenología Tridimensional/métodos , Ratones/embriología , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Morfogénesis , Transducción de Señal , Tendones/fisiología , Tretinoina/fisiología
2.
Dev Biol ; 470: 108-120, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33248111

RESUMEN

Growth of the musculoskeletal system requires precise coordination between bone, muscle, and tendon during development. Insufficient elongation of the muscle-tendon unit relative to bone growth results in joint contracture, a condition characterized by reduction or complete loss of joint range of motion. Here we establish a novel murine model of joint contracture by targeting Smad4 for deletion in the tendon cell lineage using Scleraxis-Cre (ScxCre). Smad4ScxCre mutants develop a joint contracture shortly after birth. The contracture is stochastic in direction and increases in severity with age. Smad4ScxCre mutant tendons exhibited a stable reduction in cellularity and a progressive reduction in extracellular matrix volume. Collagen fibril diameters were reduced in the Smad4ScxCre mutants, suggesting a role for Smad4 signaling in the regulation of matrix accumulation. Although ScxCre also has sporadic activity in both cartilage and muscle, we demonstrate an essential role for Smad4 loss in tendons for the development of joint contractures. Disrupting the canonical TGFß-pathway in Smad2;3ScxCre mutants did not result in joint contractures. Conversely, disrupting the BMP pathway by targeting BMP receptors (Alk3ScxCre/Alk6null) recapitulated many features of the Smad4ScxCre contracture phenotype, suggesting that joint contracture in Smad4ScxCre mutants is caused by disruption of BMP signaling. Overall, these results establish a model of murine postnatal joint contracture and a role for BMP signaling in tendon elongation and extracellular matrix accumulation.


Asunto(s)
Contractura/metabolismo , Contractura/patología , Proteína Smad4/metabolismo , Tendones/crecimiento & desarrollo , Animales , Desarrollo Óseo , Proteínas Morfogenéticas Óseas/metabolismo , Cartílago/crecimiento & desarrollo , Cartílago/metabolismo , Linaje de la Célula , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Miembro Anterior , Ratones , Músculo Esquelético/metabolismo , Transducción de Señal , Proteína Smad4/genética , Tendones/citología , Tendones/embriología , Tendones/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
3.
Development ; 145(24)2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30504126

RESUMEN

Tendon-bone attachment sites, called entheses, are essential for musculoskeletal function. They are formed embryonically by Sox9+ progenitors and continue to develop postnatally, utilizing Gli1 lineage cells. Despite their importance, we lack information on the transition from embryonic to mature enthesis and on the relation between Sox9+ progenitors and the Gli1 lineage. Here, by performing a series of lineage tracing experiments in mice, we identify the onset of Gli1 lineage contribution to different entheses. We show that Gli1 expression is regulated embryonically by SHH signaling, whereas postnatally it is maintained by IHH signaling. During bone elongation, some entheses migrate along the bone shaft, whereas others remain stationary. Interestingly, in stationary entheses Sox9+ cells differentiate into the Gli1 lineage, but in migrating entheses this lineage is replaced by Gli1 lineage. These Gli1+ progenitors are defined embryonically to occupy the different domains of the mature enthesis. Overall, these findings demonstrate a developmental strategy whereby one progenitor population establishes a simple embryonic tissue, whereas another population contributes to its maturation. Moreover, they suggest that different cell populations may be considered for cell-based therapy of enthesis injuries.


Asunto(s)
Huesos/fisiología , Movimiento , Células Madre/citología , Tendones/fisiología , Animales , Animales Recién Nacidos , Compartimento Celular , Muerte Celular , Linaje de la Célula , Embrión de Mamíferos/citología , Desarrollo Embrionario , Femenino , Proteínas Hedgehog/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Osteoclastos/citología , Osteoclastos/metabolismo , Fagocitos/citología , Fagocitos/metabolismo , Factor de Transcripción SOX9/metabolismo , Células Madre/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo
4.
Development ; 142(14): 2431-41, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26062940

RESUMEN

The long tendons of the limb extend from muscles that reside in the zeugopod (arm/leg) to their skeletal insertions in the autopod (paw). How these connections are established along the length of the limb remains unknown. Here, we show that mouse limb tendons are formed in modular units that combine to form a functional contiguous structure; in muscle-less limbs, tendons develop in the autopod but do not extend into the zeugopod, and in the absence of limb cartilage the zeugopod segments of tendons develop despite the absence of tendons in the autopod. Analyses of cell lineage and proliferation indicate that distinct mechanisms govern the growth of autopod and zeugopod tendon segments. To elucidate the integration of these autopod and zeugopod developmental programs, we re-examined early tendon development. At E12.5, muscles extend across the full length of a very short zeugopod and connect through short anlagen of tendon progenitors at the presumptive wrist to their respective autopod tendon segment, thereby initiating musculoskeletal integration. Zeugopod tendon segments are subsequently generated by proximal elongation of the wrist tendon anlagen, in parallel with skeletal growth, underscoring the dependence of zeugopod tendon development on muscles for tendon anchoring. Moreover, a subset of extensor tendons initially form as fused structures due to initial attachment of their respective wrist tendon anlage to multiple muscles. Subsequent individuation of these tendons depends on muscle activity. These results establish an integrated model for limb tendon development that provides a framework for future analyses of tendon and musculoskeletal phenotypes.


Asunto(s)
Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/embriología , Tendones/embriología , Animales , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cartílago/metabolismo , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Articulación Metacarpofalángica/patología , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Músculo Esquelético/metabolismo , Fenotipo , Factor de Transcripción SOX9/genética , Tendones/metabolismo
5.
Connect Tissue Res ; 59(4): 295-308, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28937836

RESUMEN

PURPOSE: Tendon injuries are clinically challenging due to poor healing. A better understanding of the molecular events that regulate tendon differentiation would improve current strategies for repair. The mouse model system has been instrumental to tendon studies and several key molecules were initially established in mouse. However, the study of gene function has been limited by the absence of a standard in vitro tendon system for efficiently testing multiple mutations, physical manipulations, and mis-expression. The purpose of this study is therefore to establish such a system. METHODS: We adapted an existing design for generating three-dimensional (3D) tendon constructs for use with mouse progenitor cells harboring the ScxGFP tendon reporter and the Rosa26-TdTomato Cre reporter. Using these cells, we optimized the parameters for construct formation, inducing tenogenesis via transforming growth factor-ß2 (TGFß2), and genetic recombination via an adenovirus encoding Cre recombinase. Finally, for proof of concept, we used Smad4 floxed cells and tested the robustness of the system for gene knockdown. RESULTS: We found that TGFß2 treatment induced a tenogenic phenotype depending on the timing of initiation. Addition of TGFß2 after 3D "tensioning" enhanced tendon differentiation. Interestingly, while TGFß2-induced proliferation depended on Smad4, tenogenic parameters such as ScxGFP expression and fibril diameter were independent of Smad4. CONCLUSIONS: Our results demonstrate the feasibility of this optimized system for harnessing the power of mouse genetics for in vitro applications.


Asunto(s)
Imagenología Tridimensional , Modelos Biológicos , Organogénesis , Tendones/crecimiento & desarrollo , Adenoviridae/metabolismo , Animales , Recuento de Células , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/metabolismo , Ratones , Mutación/genética , Fenotipo , Proteoglicanos/metabolismo , Reproducibilidad de los Resultados , Proteína Smad4/metabolismo , Tendones/citología , Tendones/ultraestructura , Factor de Crecimiento Transformador beta2/farmacología
6.
Stem Cell Reports ; 16(12): 2942-2957, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34822771

RESUMEN

Understanding cell recruitment in damaged tendons is critical for improvements in regenerative therapy. We recently reported that targeted disruption of transforming growth factor beta (TGFß) type II receptor in the tendon cell lineage (Tgfbr2ScxCre) resulted in resident tenocyte dedifferentiation and tendon deterioration in postnatal stages. Here we extend the analysis and identify direct recruitment of stem/progenitor cells into the degenerative mutant tendons. Cre-mediated lineage tracing indicates that these cells are not derived from tendon-ensheathing tissues or from a Scleraxis-expressing lineage, and they turned on tendon markers only upon entering the mutant tendons. Through immunohistochemistry and inducible gene deletion, we further find that the recruited cells originated from a Sox9-expressing lineage and their recruitment was dependent on cell autonomous TGFß signaling. The cells identified in this study thus differ from previous reports of cell recruitment into injured tendons and suggest a critical role for TGFß signaling in cell recruitment, providing insights that may support improvements in tendon repair.


Asunto(s)
Transducción de Señal , Células Madre/metabolismo , Tendones/patología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Biomarcadores/metabolismo , Células Cultivadas , Células Clonales , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/metabolismo , Ratones , Modelos Biológicos , Mutación/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Tendones/ultraestructura , Factores de Tiempo
7.
Elife ; 92020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31961320

RESUMEN

Studies of cell fate focus on specification, but little is known about maintenance of the differentiated state. In this study, we find that the mouse tendon cell fate requires continuous maintenance in vivo and identify an essential role for TGFß signaling in maintenance of the tendon cell fate. To examine the role of TGFß signaling in tenocyte function the TGFß type II receptor (Tgfbr2) was targeted in the Scleraxis-expressing cell lineage using the ScxCre deletor. Tendon development was not disrupted in mutant embryos, but shortly after birth tenocytes lost differentiation markers and reverted to a more stem/progenitor state. Viral reintroduction of Tgfbr2 to mutants prevented and even rescued tenocyte dedifferentiation suggesting a continuous and cell autonomous role for TGFß signaling in cell fate maintenance. These results uncover the critical importance of molecular pathways that maintain the differentiated cell fate and a key role for TGFß signaling in these processes.


Asunto(s)
Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Tendones/citología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Desdiferenciación Celular , Linaje de la Célula , Regulación de la Expresión Génica , Ratones , Mutación , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Tendones/metabolismo , Tenocitos/citología , Tenocitos/metabolismo
8.
Dev Dyn ; 238(3): 685-92, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19235716

RESUMEN

Tppp3, a member of the Tubulin polymerization-promoting protein family, is an intrinsically unstructured protein that induces tubulin polymerization. We show that Tppp3 is a distinct marker in the developing musculoskeletal system. In tendons, Tppp3 is expressed in cells at the circumference of the developing tendons, likely the progenitors of connective tissues that surround tendons: the tendon sheath, epitenon, and paratenon. These tissues form an elastic sleeve around tendons and provide lubrication to minimize friction between tendons and surrounding tissues. Tppp3 is the first molecular marker of the tendon sheath, opening the door for direct examination of these tissues. Tppp3 is also expressed in forming synovial joints. The onset of Tppp3 expression in joints coincides with cavitation, representing a molecular marker that can be used to indicate this stage in joint transition in joint differentiation. In late embryonic stages, Tppp3 expression highlights other demarcation lines that surround differentiating tissues in the forelimb.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Membrana Sinovial/metabolismo , Tendones/metabolismo , Animales , Biomarcadores , Moléculas de Adhesión Celular/genética , Diferenciación Celular , Tejido Conectivo/embriología , Tejido Conectivo/metabolismo , Regulación de la Expresión Génica , Ratones , Membrana Sinovial/citología , Membrana Sinovial/embriología , Tendones/citología , Tendones/embriología
9.
Dev Dyn ; 238(3): 693-700, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19235726

RESUMEN

The range and precision of limb movements are dependent on the specific patterns of muscles and tendons. To facilitate analyses of tendon and muscle phenotypes we compiled a description of these tissues in the forelimb of developing mouse embryos. Individual tendons, muscles, and ligaments were annotated in a series of transverse sections through the forelimb of an embryo at day 18.5 of embryonic development (E18.5). Transverse sections present a distinctive and highly reproducible pattern of the muscles and tendons at different limb levels that can be used as a simple reference in analyses of mutant phenotypes. A comparable set of sections from an embryo at E14.5 was included to highlight structural features that change during the maturation of the musculoskeletal system. The ability to define the precise position of transverse sections along the proximal-distal axis of the limb may also be useful in studies of other features in developing limbs.


Asunto(s)
Embrión de Mamíferos/embriología , Miembro Anterior/embriología , Músculos/embriología , Tendones/embriología , Animales , Tipificación del Cuerpo , Embrión de Mamíferos/metabolismo , Miembro Anterior/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones , Músculos/metabolismo , Tendones/metabolismo
10.
Development ; 136(8): 1351-61, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19304887

RESUMEN

Tendons and ligaments mediate the attachment of muscle to bone and of bone to bone to provide connectivity and structural integrity in the musculoskeletal system. We show that TGFbeta signaling plays a major role in the formation of these tissues. TGFbeta signaling is a potent inducer of the tendon progenitor (TNP) marker scleraxis both in organ culture and in cultured cells, and disruption of TGFbeta signaling in Tgfb2(-/-);Tgfb3(-/-) double mutant embryos or through inactivation of the type II TGFbeta receptor (TGFBR2; also known as TbetaRII) results in the loss of most tendons and ligaments in the limbs, trunk, tail and head. The induction of scleraxis-expressing TNPs is not affected in mutant embryos and the tendon phenotype is first manifested at E12.5, a developmental stage in which TNPs are positioned between the differentiating muscles and cartilage, and in which Tgfb2 or Tgfb3 is expressed both in TNPs and in the differentiating muscles and cartilage. TGFbeta signaling is thus essential for maintenance of TNPs, and we propose that it also mediates the recruitment of new tendon cells by differentiating muscles and cartilage to establish the connections between tendon primordia and their respective musculoskeletal counterparts, leading to the formation of an interconnected and functionally integrated musculoskeletal system.


Asunto(s)
Transducción de Señal , Tendones/embriología , Tendones/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Alelos , Animales , Biomarcadores , Cartílago/embriología , Cartílago/metabolismo , Células Cultivadas , Extremidades/embriología , Ratones , Músculos/embriología , Músculos/metabolismo , Mutación/genética , Células Madre/metabolismo , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Factor de Crecimiento Transformador beta2/deficiencia , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta3/deficiencia , Factor de Crecimiento Transformador beta3/genética
11.
Dev Cell ; 17(6): 861-73, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20059955

RESUMEN

During the assembly of the musculoskeletal system, bone ridges provide a stable anchoring point and stress dissipation for the attachment of muscles via tendons to the skeleton. In this study, we investigate the development of the deltoid tuberosity as a model for bone ridge formation. We show that the deltoid tuberosity develops through endochondral ossification in a two-phase process: initiation is regulated by a signal from the tendons, whereas the subsequent growth phase is muscle dependent. We then show that the transcription factor scleraxis (SCX) regulates Bmp4 in tendon cells at their insertion site. The inhibition of deltoid tuberosity formation and several other bone ridges in embryos in which Bmp4 expression was blocked specifically in Scx-expressing cells implicates BMP4 as a key mediator of tendon effects on bone ridge formation. This study establishes a mechanistic basis for tendon-skeleton regulatory interactions during musculoskeletal assembly and bone secondary patterning.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Regulación del Desarrollo de la Expresión Génica , Osteogénesis , Tendones/embriología , Animales , Embrión de Mamíferos/metabolismo , Ratones
12.
Dev Dyn ; 236(6): 1677-82, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17497702

RESUMEN

Defects in tendon patterning and differentiation are seldom assessed in mouse mutants due to the difficulty in visualizing connective tissue structures. To facilitate tendon analysis, we have generated mouse lines harboring two different transgene reporters, alkaline phosphatase (AP) and green fluorescent protein (GFP), each expressed using regulatory elements derived from the endogenous Scleraxis (Scx) locus. Scx encodes a transcription factor expressed in all developing tendons and ligaments as well as in their progenitors. Both the ScxGFP and ScxAP transgenes are expressed in patterns recapitulating almost entirely the endogenous developmental expression of Scx including very robust expression in the tendons and ligaments. These reporter lines will facilitate isolation of tendon cells and phenotypic analysis of these tissues in a variety of genetic backgrounds.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Reporteros/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Tendones/metabolismo , Animales , Extremidades/embriología , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas/genética , Factores de Tiempo
13.
Cell ; 114(6): 751-62, 2003 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-14505574

RESUMEN

Myoblast fusion is essential for the formation and regeneration of skeletal muscle. In a genetic screen for regulators of muscle development in Drosophila, we discovered a gene encoding a guanine nucleotide exchange factor, called loner, which is required for myoblast fusion. Loner localizes to subcellular sites of fusion and acts downstream of cell surface fusion receptors by recruiting the small GTPase ARF6 and stimulating guanine nucleotide exchange. Accordingly, a dominant-negative ARF6 disrupts myoblast fusion in Drosophila embryos and in mammalian myoblasts in culture, mimicking the fusion defects caused by loss of Loner. Loner and ARF6, which also control the proper membrane localization of another small GTPase, Rac, are key components of a cellular apparatus required for myoblast fusion and muscle development. In muscle cells, this fusigenic mechanism is coupled to fusion receptors; in other fusion-competent cell types it may be triggered by different upstream signals.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster/embriología , Factores de Intercambio de Guanina Nucleótido/aislamiento & purificación , Músculo Esquelético/embriología , Mioblastos/enzimología , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/genética , Secuencia de Aminoácidos/genética , Animales , Secuencia de Bases/genética , Fusión Celular , Células Cultivadas , Citoplasma/genética , Citoplasma/metabolismo , ADN Complementario/análisis , ADN Complementario/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Factores de Intercambio de Guanina Nucleótido/genética , Ratones , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/enzimología , Músculo Esquelético/citología , Músculo Esquelético/enzimología , Mutación/genética , Mioblastos/citología , Estructura Terciaria de Proteína/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA