Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Biomacromolecules ; 24(9): 3996-4004, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37555845

RESUMEN

The bioconversion of homogeneous linear catechyl lignin (C-lignin) to polyhydroxyalkanoates (PHA) was examined for the first time in this study. C-lignins from vanilla, euphorbia, and candlenut seed coats (denoted as C1, C2, and C3, respectively) varied in their molecular structures, which showed different molecular weight distributions, etherification degrees, and contents of hydroxyl groups. A notable amount of nonetherified catechol units existed within C1 and C2 lignins, and these catechol units were consumed during fermentation. These results suggested that the nonetherified catechol structure was readily converted by Pseudomonas putida KT2440. Since the weight-average molecular weight of C2 raw lignin was 26.7% lower than that of C1, the bioconversion performance of C2 lignin was more outstanding. The P. putida KT2440 cell amount reached the maximum of 9.3 × 107 CFU/mL in the C2 medium, which was 37.9 and 82.4% higher than that in the C1 and C3 medium, respectively. Accordingly, PHA concentration reached 137 mg/L within the C2 medium, which was 41.2 and 149.1% higher than the C1 and C3 medium, respectively. Overall, C-lignin, with a nonetherified catechol structure and low molecular weight, benefits its microbial conversion significantly.


Asunto(s)
Polihidroxialcanoatos , Pseudomonas putida , Lignina/química , Polihidroxialcanoatos/química , Fermentación , Pseudomonas putida/química
2.
Proc Natl Acad Sci U S A ; 117(29): 16776-16781, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32636260

RESUMEN

A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF):water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (>25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent water-rich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THF:water pretreatment is provided: matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale.


Asunto(s)
Biotecnología/métodos , Lignina/química , Madera/química , Proteínas Bacterianas/metabolismo , Biomasa , Celulasa/metabolismo , Furanos/química , Gluconacetobacter xylinus/enzimología , Hidrólisis , Lignina/metabolismo , Populus/química , Solventes/química , Tensoactivos/química
3.
Plant Biotechnol J ; 18(3): 859-871, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31498543

RESUMEN

Prefoldin (PFD) is a group II chaperonin that is ubiquitously present in the eukaryotic kingdom. Six subunits (PFD1-6) form a jellyfish-like heterohexameric PFD complex and function in protein folding and cytoskeleton organization. However, little is known about its function in plant cell wall-related processes. Here, we report the functional characterization of a PFD gene from Populus deltoides, designated as PdPFD2.2. There are two copies of PFD2 in Populus, and PdPFD2.2 was ubiquitously expressed with high transcript abundance in the cambial region. PdPFD2.2 can physically interact with DELLA protein RGA1_8g, and its subcellular localization is affected by the interaction. In P. deltoides transgenic plants overexpressing PdPFD2.2, the lignin syringyl/guaiacyl ratio was increased, but cellulose content and crystallinity index were unchanged. In addition, the total released sugar (glucose and xylose) amounts were increased by 7.6% and 6.1%, respectively, in two transgenic lines. Transcriptomic and metabolomic analyses revealed that secondary metabolic pathways, including lignin and flavonoid biosynthesis, were affected by overexpressing PdPFD2.2. A total of eight hub transcription factors (TFs) were identified based on TF binding sites of differentially expressed genes in Populus transgenic plants overexpressing PdPFD2.2. In addition, several known cell wall-related TFs, such as MYB3, MYB4, MYB7, TT8 and XND1, were affected by overexpression of PdPFD2.2. These results suggest that overexpression of PdPFD2.2 can reduce biomass recalcitrance and PdPFD2.2 is a promising target for genetic engineering to improve feedstock characteristics to enhance biofuel conversion and reduce the cost of lignocellulosic biofuel production.


Asunto(s)
Biomasa , Chaperonas Moleculares/genética , Populus/genética , Genes de Plantas , Lignina , Plantas Modificadas Genéticamente
4.
New Phytol ; 228(5): 1627-1639, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32706429

RESUMEN

The apparent antagonism between salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signalling resulting in trade-offs between defence against (hemi)biotrophic and necrotrophic pathogens has been widely described across multiple plant species. However, the underlying mechanism remains to be fully established. The molecular and cellular functions of ANGUSTIFOLIA (AN) were characterised, and its role in regulating the pathogenic response was studied in Arabidopsis. We demonstrated that AN, a plant homologue of mammalian C-TERMINAL BINDING PROTEIN (CtBP), antagonistically regulates plant resistance to the hemibiotrophic pathogen Pseudomonas syringae and the necrotrophic pathogen Botrytis cinerea. Consistent with phenotypic observations, transcription of genes involved in SA and JA/ET pathways was antagonistically regulated by AN. By interacting with another nuclear protein TYROSYL-DNA PHOSPHODIESTERASE1 (TDP1), AN imposes transcriptional repression on MYB46, encoding a transcriptional activator of PHENYLALANINE AMMONIA-LYASE (PAL) genes which are required for SA biosynthesis, while releasing TDP1-imposed transcriptional repression on WRKY33, a master regulator of the JA/ET signalling pathway. These findings demonstrate that transcriptional co-regulation of MYB46 and WRKY33 by AN mediates the coordination of SA and JA/ET pathways to optimise defences against (hemi)biotrophic and necrotrophic pathogens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Represoras , Factores de Transcripción , Oxidorreductasas de Alcohol , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Botrytis , Ciclopentanos , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Enfermedades de las Plantas/genética , Ácido Salicílico
5.
J Am Chem Soc ; 141(32): 12545-12557, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31304747

RESUMEN

The complex structure of plant cell walls resists chemical or biological degradation, challenging the breakdown of lignocellulosic biomass into renewable chemical precursors that could form the basis of future production of green chemicals and transportation fuels. Here, experimental and computational results reveal that the effect of the tetrahydrofuran (THF)-water cosolvents on the structure of lignin and on its interactions with cellulose in the cell wall drives multiple synergistic mechanisms leading to the efficient breakdown and fractionation of biomass into valuable chemical precursors. Molecular simulations show that THF-water is an excellent "theta" solvent, such that lignin dissociates from itself and from cellulose and expands to form a random coil. The expansion of the lignin molecules exposes interunit linkages, rendering them more susceptible to depolymerization by acid-catalyzed cleavage of aryl-ether bonds. Nanoscale infrared sensors confirm cosolvent-mediated molecular rearrangement of lignin in the cell wall of micrometer-thick hardwood slices and track the disappearance of lignin. At bulk scale, adding dilute acid to the cosolvent mixture liberates the majority of the hemicellulose and lignin from biomass, allowing unfettered access of cellulolytic enzymes to the remaining cellulose-rich material, allowing them to sustain high rates of hydrolysis to glucose without enzyme deactivation. Through this multiscale analysis, synergistic mechanisms for biomass deconstruction are identified, portending a paradigm shift toward first-principles design and evaluation of other cosolvent methods to realize low cost fuels and bioproducts.


Asunto(s)
Biomasa , Celulosa/química , Furanos/química , Lignina/química , Solventes/química , Agua/química , Acer/química , Hidrólisis , Simulación de Dinámica Molecular , Polisacáridos/química
6.
BMC Plant Biol ; 19(1): 486, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31711424

RESUMEN

BACKGROUND: Plant secondary cell wall is a renewable feedstock for biofuels and biomaterials production. Arabidopsis VASCULAR-RELATED NAC DOMAIN (VND) has been demonstrated to be a key transcription factor regulating secondary cell wall biosynthesis. However, less is known about its role in the woody species. RESULTS: Here we report the functional characterization of Populus deltoides WOOD-ASSOCIATED NAC DOMAIN protein 3 (PdWND3A), a sequence homolog of Arabidopsis VND4 and VND5 that are members of transcription factor networks regulating secondary cell wall biosynthesis. PdWND3A was expressed at higher level in the xylem than in other tissues. The stem tissues of transgenic P. deltoides overexpressing PdWND3A (OXPdWND3A) contained more vessel cells than that of wild-type plants. Furthermore, lignin content and lignin monomer syringyl and guaiacyl (S/G) ratio were higher in OXPdWND3A transgenic plants than in wild-type plants. Consistent with these observations, the expression of FERULATE 5-HYDROXYLASE1 (F5H1), encoding an enzyme involved in the biosynthesis of sinapyl alcohol (S unit monolignol), was elevated in OXPdWND3A transgenic plants. Saccharification analysis indicated that the rate of sugar release was reduced in the transgenic plants. In addition, OXPdWND3A transgenic plants produced lower amounts of biomass than wild-type plants. CONCLUSIONS: PdWND3A affects lignin biosynthesis and composition and negatively impacts sugar release and biomass production.


Asunto(s)
Lignina/biosíntesis , Proteínas de Plantas/genética , Populus/genética , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Lignina/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Populus/química , Populus/metabolismo , Factores de Transcripción/metabolismo
7.
Biomacromolecules ; 20(2): 893-903, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30554514

RESUMEN

Model hemicellulose-cellulose composites that mimic plant cell wall polymer interactions were prepared by synthesizing deuterated bacterial cellulose in the presence of glucomannan or xyloglucan. Dilute acid pretreatment (DAP) of these materials was studied using small-angle neutron scattering, X-ray diffraction, and sum frequency generation spectroscopy. The macrofibril dimensions of the pretreated cellulose alone were smaller but with similar entanglement of macrofibrillar network as native cellulose. In addition, the crystallite size dimension along the (010) plane increased. Glucomannan-cellulose underwent similar changes to cellulose, except that the macrofibrillar network was more entangled after DAP. Conversely, in xyloglucan-cellulose the macrofibril dimensions and macrofibrillar network were relatively unchanged after pretreatment, but the cellulose Iß content was increased. Our results point to a tight interaction of xyloglucan with microfibrils while glucomannan only interacts with macrofibril surfaces. This study provides insight into roles of different hemicellulose-cellulose interactions and may help in improving pretreatment processes or engineering plants with decreased recalcitrance.


Asunto(s)
Celulosa/química , Polisacáridos/química , Pared Celular/química , Glucanos/química , Mananos/química , Plantas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Xilanos/química
8.
Plant Cell ; 25(11): 4342-61, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24285795

RESUMEN

It is necessary to overcome recalcitrance of the biomass to saccharification (sugar release) to make switchgrass (Panicum virgatum) economically viable as a feedstock for liquid biofuels. Lignin content correlates negatively with sugar release efficiency in switchgrass, but selecting the right gene candidates for engineering lignin biosynthesis in this tetraploid outcrossing species is not straightforward. To assist this endeavor, we have used an inducible switchgrass cell suspension system for studying lignin biosynthesis in response to exogenous brassinolide. By applying a combination of protein sequence phylogeny with whole-genome microarray analyses of induced cell cultures and developing stem internode sections, we have generated a list of candidate monolignol biosynthetic genes for switchgrass. Several genes that were strongly supported through our bioinformatics analysis as involved in lignin biosynthesis were confirmed by gene silencing studies, in which lignin levels were reduced as a result of targeting a single gene. However, candidate genes encoding enzymes involved in the early steps of the currently accepted monolignol biosynthesis pathway in dicots may have functionally redundant paralogues in switchgrass and therefore require further evaluation. This work provides a blueprint and resources for the systematic genome-wide study of the monolignol pathway in switchgrass, as well as other C4 monocot species.


Asunto(s)
Genómica/métodos , Lignina/biosíntesis , Panicum/genética , Panicum/metabolismo , Vías Biosintéticas/genética , Técnicas de Cultivo de Célula , Clonación Molecular , Análisis por Conglomerados , Enzimas/genética , Enzimas/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Lignina/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Panicum/citología , Filogenia , Plantas Modificadas Genéticamente
9.
Biotechnol Bioeng ; 111(3): 485-92, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24037461

RESUMEN

In dilute acid pretreatment of lignocellulosic biomass, lignin has been shown to form droplets that deposit on the cellulose surface and retard enzymatic digestion of cellulose (Donohoe et al., 2008; Selig et al., 2007). However, studies of this nature are limited for hydrothermal pretreatment, with the result that the corresponding mechanisms that inhibit cellulosic enzymes are not well understood. In this study, scanning electron microscope (SEM) and wet chemical analysis of solids formed by hydrothermal pretreatment of a mixture of Avicel cellulose and poplar wood showed that lignin droplets from poplar wood relocated onto the Avicel surface. In addition, nuclear magnetic resonance (NMR) showed higher S/G ratios in deposited lignin than the initial lignin in poplar wood. Furthermore, the lignin droplets deposited on Avicel significantly impeded cellulose hydrolysis. A series of tests confirmed that blockage of the cellulose surface by lignin droplets was the main cause of cellulase inhibition. The results give new insights into the fate of lignin in hydrothermal pretreatment and its effects on enzymatic hydrolysis.


Asunto(s)
Celulasas/metabolismo , Celulosa/química , Celulosa/metabolismo , Lignina/química , Lignina/metabolismo , Celulosa/efectos de la radiación , Celulosa/ultraestructura , Calor , Hidrólisis , Lignina/efectos de la radiación , Lignina/ultraestructura , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Populus , Madera
10.
Polymers (Basel) ; 16(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38543401

RESUMEN

The non-degradable nature of petroleum-based plastics and the dependence on petroleum-based products in daily life and production are dilemmas of human development today. We hereby developed a plastic waste upcycling process to address these challenges. A multi-stream fraction strategy was developed to process poly (ethylene terephthalate) (PET) plastics into soluble and insoluble fractions. The soluble fraction was used as a sole carbon source for microbial fermentation to produce biodiesel precursor lipids with an appreciable bioconversion yield. The insoluble fraction containing fractionated polymers was used as the asphalt binder modifiers. The downsized PET additive improved the high-temperature performance of the asphalt binder by 1 performance grade (PG) without decreasing the low-temperature PG. Subsequent SEM imaging unveiled alterations in the micromorphology induced by PET incorporation. Further FTIR and 1H NMR analysis highlighted the aromatic groups of PET polymers as a crucial factor influencing performance enhancement. The results demonstrated the multi-stream fraction as a promising approach for repurposing plastic waste to produce biodiesel and modify asphalt. This approach holds the potential to tackle challenges in fuel supply and enhance infrastructure resilience to global warming.

11.
Phys Chem Chem Phys ; 15(44): 19138-42, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24126949

RESUMEN

This study demonstrates the use of isotopic labelling and NMR to study the HDO process. As far as we know, this is the first reported effort to trace the incorporation of hydrogen in the HDO process of lignin pyrolysis oil thereby providing key fundamental insight into its reaction mechanism.

12.
RSC Adv ; 13(29): 20187-20197, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37416906

RESUMEN

Lignin has long been a trait of interest, especially in bioenergy feedstocks such as Populus. While the stem lignin of Populus is well studied, foliar lignin has received significantly less consideration. To this end, leaves from 11 field grown, natural variant Populus trichocarpa genotypes were investigated by NMR, FTIR, and GC-MS. Five of these genotypes were sufficiently irrigated, and the other six genotypes were irrigated at a reduced rate (59% of the potential evapotranspiration for the site) to induce drought treatment. Analysis by HSQC NMR revealed highly variable lignin structure among the samples, especially for the syringyl/guaiacyl (S/G) ratio, which ranged from 0.52-11.9. Appreciable levels of a condensed syringyl lignin structure were observed in most samples. The same genotype subjected to different treatments exhibited similar levels of condensed syringyl lignin, suggesting this was not a response to stress. A cross peak of δC/δH 74.6/5.03, consistent with the erythro form of the ß-O-4 linkage, was observed in genotypes where significant syringyl units were present. Principle component analysis revealed that FTIR absorbances associated with syringyl units (830 cm-1, 1317 cm-1) greatly contributed to variability between samples. Additionally, the ratio of 830/1230 cm-1 peak intensities were reasonably correlated (p-value < 0.05) with the S/G ratio determined by NMR. Analysis by GC-MS revealed significant variability of secondary metabolites such as tremuloidin, trichocarpin, and salicortin. Additionally, salicin derivatives were found to be well correlated with NMR results, which has been previously hypothesized. These results highlight previously unexplored nuance and variability associated with foliage tissue of poplar.

13.
RSC Adv ; 13(19): 12750-12759, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37101533

RESUMEN

Lignin is the dominant aromatic renewable polymer on earth. Generally, its complex and heterogeneous structure hinders its high-value utilization. Catechyl lignin (C-lignin), a novel lignin discovered in the seed coats of vanilla and several members of Cactaceae, has received increasing attention due to its unique homogeneous linear structure. Obtaining substantial amounts of C-lignin either by gene regulation or effective isolation is essential to advance C-lignin's valorization. Through a fundamental understanding of the biosynthesis process, genetic engineering to promote the accumulation of C-lignin in certain plants was developed to facilitate C-lignin valorization. Various isolation methods were also developed to isolate C-lignin, among which deep eutectic solvents (DESs) treatment is one of the most promising approaches to fractionate C-lignin from biomass materials. Since C-lignin is composed of homogeneous catechyl units, depolymerization to produce catechol monomers demonstrates a promising way for value-added utilization of C-lignin. Reductive catalytic fractionation (RCF) represents another emerging technology for effective depolymerizing C-lignin, leading to a narrow distribution of lignin-derived aromatic products (e.g., propyl and propenyl catechol). Meanwhile, the linear molecular structure predisposes C-lignin as a potential promising feedstock for preparing carbon fiber materials. In this review, the biosynthesis of this unique C-lignin in plants is summarized. C-lignin isolation from plants and various depolymerization approaches to obtaining aromatic products are overviewed with highlights on RCF process. Exploring new application areas based on C-lignin's unique homogeneous linear structure is also discussed with its potential for high-value utilization in the future.

14.
Biotechnol Biofuels Bioprod ; 16(1): 100, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308891

RESUMEN

BACKGROUND: C-lignin is a homopolymer of caffeyl alcohol present in the seed coats of a variety of plant species including vanilla orchid, various cacti, and the ornamental plant Cleome hassleriana. Because of its unique chemical and physical properties, there is considerable interest in engineering C-lignin into the cell walls of bioenergy crops as a high-value co-product of bioprocessing. We have used information from a transcriptomic analysis of developing C. hassleriana seed coats to suggest strategies for engineering C-lignin in a heterologous system, using hairy roots of the model legume Medicago truncatula. RESULTS: We systematically tested strategies for C-lignin engineering using a combination of gene overexpression and RNAi-mediated knockdown in the caffeic acid/5-hydroxy coniferaldehyde 3/5-O-methyltransferase (comt) mutant background, monitoring the outcomes by analysis of lignin composition and profiling of monolignol pathway metabolites. In all cases, C-lignin accumulation required strong down-regulation of caffeoyl CoA 3-O-methyltransferase (CCoAOMT) paired with loss of function of COMT. Overexpression of the Selaginella moellendorffii ferulate 5-hydroxylase (SmF5H) gene in comt mutant hairy roots resulted in lines that unexpectedly accumulated high levels of S-lignin. CONCLUSION: C-Lignin accumulation of up to 15% of total lignin in lines with the greatest reduction in CCoAOMT expression required the strong down-regulation of both COMT and CCoAOMT, but did not require expression of a heterologous laccase, cinnamyl alcohol dehydrogenase (CAD) or cinnamoyl CoA reductase (CCR) with preference for 3,4-dihydroxy-substituted substrates in M. truncatula hairy roots. Cell wall fractionation studies suggested that the engineered C-units are not present in a heteropolymer with the bulk of the G-lignin.

15.
Front Plant Sci ; 14: 1089011, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351208

RESUMEN

Due to its ability to spread quickly and result in tree mortality, Sphaerulina musiva (Septoria) is one of the most severe diseases impacting Populus. Previous studies have identified that Septoria infection induces differential expression of phenylpropanoid biosynthesis genes. However, more extensive characterization of changes to lignin in response to Septoria infection is lacking. To study the changes of lignin due to Septoria infection, four field grown, naturally variant Populus trichocarpa exhibiting visible signs of Septoria infection were sampled at health, infected, and reaction zone regions for cell wall characterization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and acid hydrolysis were applied to identify changes to the cell wall, and especially lignin. FTIR and subsequent principal component analysis revealed that infected and reaction zone regions were similar and could be distinguished from the non-infected (healthy) region. NMR results indicated the general trend that infected region had a higher syringyl:guaiacyl ratio and lower p-hydroxybenzoate content than the healthy regions from the same genotype. Finally, Klason lignin content in the infected and/or reaction zone regions was shown to be higher than healthy region, which is consistent with previous observations of periderm development and metabolite profiling. These results provide insights on the response of Populus wood characteristics to Septoria infection, especially between healthy and infected region within the same genotype.

16.
iScience ; 26(10): 107870, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37766973

RESUMEN

Even though the discovery of lytic polysaccharide monooxygenases (LPMOs) has fundamentally shifted our understanding of biomass degradation, most of the current studies focused on their roles in carbohydrate oxidation. However, no study demonstrated if LPMO could directly participate to the process of lignin degradation in lignin-degrading microbes. This study showed that LPMO could synergize with lignin-degrading enzymes for efficient lignin degradation in white-rot fungi. The transcriptomics analysis of fungi Irpex lacteus and Dichomitus squalens during their lignocellulosic biomass degradation processes surprisingly highlighted that LPMOs co-regulated with lignin-degrading enzymes, indicating their more versatile roles in the redox network. Biochemical analysis further confirmed that the purified LPMO from I. lacteus CD2 could use diverse electron donors to produce H2O2, drive Fenton reaction, and synergize with manganese peroxidase for lignin oxidation. The results thus indicated that LPMO might uniquely leverage the redox network toward dynamic and efficient degradation of different cell wall components.

17.
Bioresour Technol ; 368: 128280, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36368492

RESUMEN

Biomass pretreatment is considered a key step in the 2nd generation biofuel production from lignocellulosic biomass. Research on conventional biomass pretreatment solvents has mainly been focused on carbohydrate conversion efficiency, while their hazardousness and/or carbon intensity were not comprehensively considered. Recent sustainability issues request further consideration for eco-friendly and sustainable alternatives like biomass-derived solvents. Carbohydrate and lignin-derived solvents have been proposed and investigated as green alternatives in many biomass processes. In this review, the applications of different types of biomass pretreatment solvents, including organic, ionic liquid, and deep eutectic solvents, are thoroughly discussed. The role of water as a co-solvent in these pretreatment processes is also reviewed. Finally, current research challenges and prospects of utilizing biomass-derived pretreatment solvents for pretreatment are discussed. Given bioethanol's market potential and increasing public awareness about environmental concerns, it will be a priority adopting sustainable and green biomass pretreatment solvents in biorefinery.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Solventes , Carbohidratos
18.
Front Plant Sci ; 14: 1153113, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215291

RESUMEN

Populus is a promising lignocellulosic feedstock for biofuels and bioproducts. However, the cell wall biopolymer lignin is a major barrier in conversion of biomass to biofuels. To investigate the variability and underlying genetic basis of the complex structure of lignin, a population of 409 three-year-old, naturally varying Populus trichocarpa genotypes were characterized by heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR). A subsequent genome-wide association study (GWAS) was conducted using approximately 8.3 million single nucleotide polymorphisms (SNPs), which identified 756 genes that were significantly associated (-log10(p-value)>6) with at least one lignin phenotype. Several promising candidate genes were identified, many of which have not previously been reported to be associated with lignin or cell wall biosynthesis. These results provide a resource for gaining insights into the molecular mechanisms of lignin biosynthesis and new targets for future genetic improvement in poplar.

19.
Bioresour Technol ; 343: 126061, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34597806

RESUMEN

Hydrothermal pretreatment (HTP) using only water offers great potential to reduce the overall cost of the bioconversion process. However, traditional HTP performed in a batch has limitations in removing lignin and often needs to be performed under severe conditions to achieve reasonable pretreatment effects. Lignin left in the pretreated residue at these conditions is also highly condensed, thus possessing an even more adverse impact on the hydrolysis process, which requires high enzyme loadings. To address these technical challenges, HTP performed in a flow-through configuration was developed to simultaneously achieve near-complete hemicellulose recovery, high lignin removal and high sugar release. Despite facing challenges such as potentially large water usage, flow-through HTP still represents one of the most cost-effective and eco-friendly pretreatment methods. This review mainly covers the latest cutting-edge innovations of flow-through HTP along with structural and compositional changes of cellulose, hemicellulose, and lignin before and after pretreatment.


Asunto(s)
Celulosa , Lignina , Biomasa , Hidrólisis , Agua
20.
ChemSusChem ; 15(8): e202102486, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35199466

RESUMEN

Carbon dots (CDs) are a relatively new type of fluorescent carbon material with excellent performance and widespread application. As the most readily available and widely distributed biomass resource, lignocellulosics are a renewable bioresource with great potential. Research into the preparation of CDs with lignocellulose (LC-CDs) has become the focus of numerous researchers. Compared with other carbon sources, lignocellulose is low cost, rich in structural variety, exhibits excellent biocompatibility,[1] and the structures of CDs prepared by lignin, cellulose, and hemicellulose are similar. This Review summarized research progress in the preparation of CDs from lignocellulosics in recent years and reviewed traditional and new preparation methods, physical and chemical properties, optical properties, and applications of LC-CDs, providing guidance for the formation and improvement of LC-CDs. In addition, the challenges of synthesizing LC-CDs were also highlighted, including the interaction of different lignocellulose components on the formation of LC-CDs and the nucleation and growth mechanism of LC-CDs; from this, current trends and opportunities of LC-CDs were examined, and some research methods for future research were put forward.


Asunto(s)
Carbono , Puntos Cuánticos , Biomasa , Carbono/química , Colorantes , Colorantes Fluorescentes/química , Lignina , Puntos Cuánticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA